首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
This study examined elementary teachers’ instructional strategies for promoting scientific understanding and inquiry and supporting English language development with diverse student groups including English language learners. The study was part of a 5-year research and development project consisting of reform-based science curriculum units and teacher workshops aimed at providing effective science instruction to promote students’ science and literacy achievement in urban elementary schools. Data consisted of 213 post-observation interviews with third, fourth, and fifth grade teachers. The teachers reported using instructional strategies to promote scientific understanding, but generally did not employ more sophisticated inquiry-based strategies. They also reported using instructional strategies to support English language development. There were significant differences among grade levels and by years of teacher participation.  相似文献   

2.

Several studies have found active learning to enhance students’ motivation and attitudes. Yet, faculty indicate that students resist active learning and censure them on evaluations after incorporating active learning into their instruction, resulting in an apparent paradox. We argue that the disparity in findings across previous studies is the result of variation in the active learning instruction that was implemented. The purpose of this study was to illuminate sources of motivation from and resistance to active learning that resulted from a novel, exemplary active-learning approach rooted in essential science practices and supported by science education literature. This approach was enacted over the course of 4 weeks in eight sections of an introductory undergraduate biology laboratory course. A plant concept inventory, administered to students as a pre-, post-, and delayed-posttest indicated significant proximal and distal learning gains. Qualitative analysis of open-response questionnaires and interviews elucidated sources of motivation and resistance that resulted from this active-learning approach. Several participants indicated this approach enhanced interest, creativity, and motivation to prepare, and resulted in a challenging learning environment that facilitated the sharing of diverse perspectives and the development of a community of learners. Sources of resistance to active learning included participants’ unfamiliarity with essential science practices, having to struggle with uncertainty in the absence of authoritative information, and the extra effort required to actively construct knowledge as compared to learning via traditional, teacher-centered instruction. Implications for implementation, including tips for reducing student resistance to active learning, are discussed.

  相似文献   

3.
This two-year mixed-method case study examined if and how a teacher preparation program can change preservice teachers' motivation to teach culturally and linguistically diverse learners. Survey data from Master of Arts in Teaching (MAT) candidates demonstrated statistically significant changes in MATs' self-confidence for teaching diverse learners, their self-efficacy for culturally responsive pedagogy (CRP), their perception of the value of multicultural teaching, and in their interest in teaching diverse learners. Interview and focus group data identified explicit instruction on CRP, diverse practicum opportunities, and an emphasis on culturally-oriented self-inquiry as factors that enhanced teachers’ desire to teach diverse students.  相似文献   

4.

Science learning is inextricably tied to two aspects of students’ lives: literacy and culture. While English Learners (ELs) who speak a non-English native language are typically the focus in this line of scholarly inquiry, deaf and hard-of-hearing (DHH) students occupy a distinct space in this conversation. For DHH learners, literacy levels can be hindered by an early dependence on a more survival-based language learning model that postpones basic scientific inquiry. The vocabulary for curiosity is limited, which in turn affects the educational culture. DHH learners have a unique culture that demands an appropriate science curriculum, which thus far has not been explored or attempted for either DHH learners or their educators. Data collected consisted of interviews with teachers of DHH students, as well as observational data collected from a high-minority urban K-8 school for DHH students. The analysis revealed that, first, many of the teachers had limited preparation to teach science content. Second, DHH teachers used inconsistent instructional strategies ranging from drawing pictures to building models. Third, the modifications provided to DHH science learners were mostly limited to visual support and repetition. Implications for teacher education programs include instruction focused on specific supports for DHH students and co-teaching methods, and deeper investigation of inquiry-based science practices. Implications for classroom practices include providing hands-on, inquiry-based instruction, working closely with parents, and developing students’ and teachers’ understanding of scientific inquiry.

  相似文献   

5.
This study investigated the hypothesis that prompting students to self-assess their interest and understanding of science concepts and activities would increase their motivation in science classes. Students were randomly assigned to an experimental condition that wrote self-assessments of their competence and interest in science lessons or a control condition that wrote summaries of those same lessons. Writing activities were 10?min long and were given approximately once a week for eighteen weeks. Student motivation was assessed via self-report surveys for achievement goals and interest in science before and after the intervention. Students in the experimental condition showed higher endorsement of mastery goals and reported greater situational interest in science topics after the intervention compared to students who summarised the lessons. Increases in situational interest predicted higher individual interest in the domain. Results indicate an instructional practice requiring just 3?hours out of a semester of instruction was sufficient to achieve these effects on motivation in science classes.  相似文献   

6.
Students with learning disabilities (LD) are increasingly expected to master content in the general education curriculum, making the need for effective instructional supports more important than ever before. Science is a part of the curriculum that can be particularly challenging to students with LD because of the diverse demands it places on cognitive performance. In this summary we review a number of strategies that have been validated for learners with LD. The strategies include supports for (a) verbal learning of declarative information, (b) processing information in texts, (c) activities‐based instruction/experiential learning, (d) scientific thinking and reasoning, and (e) differentiated instruction. We also summarize the research regarding the impact of teacher behavior on achievement for students with LD in science education. The strategies reviewed yield tangible and positive effect sizes that suggest that their application to the target domain will substantially improve outcomes for students with LD in science education.  相似文献   

7.
Besides viewing knowledge about the nature of science (NOS) as important for its own value with respect to scientific literacy, an adequate understanding of NOS is expected to improve science content learning by fostering the ability to interrelate scientific concepts and, thus, coherently acquire scientific content knowledge. However, there is a lack of systematic investigations, which clarify the relations between NOS and science content learning. In this paper, we present the results of a study, conducted to investigate how NOS understanding relates to students’ acquisition of a proper understanding of the concept of energy. A total of 82 sixth and seventh grade students received an instructional unit on energy, with 41 of them receiving generic NOS instruction beforehand. This NOS instruction, however, did not result in students having higher scores on the NOS instrument. Thus, correlational analyses were performed to investigate how students’ NOS understanding prior to the energy unit related to their learning about science content. Results show that a more adequate understanding of NOS might relate to students’ perspective on the concept of energy and might support them in understanding the nature of energy as a theoretical concept. Students with higher NOS understanding, for example, seemed to be more capable of learning how to relate the different energy forms to each other and to justify why they can be subsumed under the term of energy. Further, we found that NOS understanding may also be related to students’ approach toward energy degradation—a concept that can be difficult for students to master—while it does not seem to have a substantive impact on students’ learning gain regarding energy forms, transformation, or conservation.  相似文献   

8.
Abstract

This paper introduces ‘Integrative Drama-Inquiry Learning’ (IDI), merging drama-based learning with inquiry-based learning in order to exemplify teaching science through drama. The study also reports on the findings of a sequential mixed-methods procedure embedded in a quasi-experimental research design aimed to understand the effects of IDI on middle school students’ achievement in a biological unit. The initial quantitative phase revealed that IDI instruction had a significant effect on the experimental group’s achievement compared with traditional teaching. A follow-up qualitative phase showed that their achievement was affected by the enhancement of intrinsic motivation through IDI. Analysis suggested that students’ satisfaction of psychological needs of competency, relatedness, and autonomy positively affected learners’ motivation, as advocated by the self-determination theory.  相似文献   

9.
A longitudinal study has been conducted to explore the impact of a new language policy for Hong Kong secondary schools on science learning. According to this policy, only schools that recruit the best 25% of students can teach science in English, the students' second language, while the other schools have to teach science in Chinese, the students' native language. The study involved a student cohort of 100 schools starting from S1 for three years. The outcome of science learning is conceptualized as consisting of students' achievement and self-concept in science. This paper reports the possible effects of English-medium instruction (EMI) and Chinese-medium instruction (CMI) on students' self-concept in science, as measured by students' responses to a questionnaire. Comparing with the CMI students, the EMI students showed higher self-concepts in Chinese, English and Mathematics, but a lower self-concept in science. This finding suggests that the EMI students might experience greater learning problems in science than in other subjects, probably because science learning involves abstract thinking and the mastery of scientific terminology which make a high demand on language proficiency. The EMI students showed a greater interest in learning science than the CMI students, indicating that they were more academically oriented. The EMI students, however, formed a lower perceived self-competence in science than their CMI peers, despite that they performed better in the science achievement test than many of the CMI students. This perception supports the view that using English for instruction may have negative effects on science learning. It is also consistent with the observation that the EMI students perceived science as more difficult to understand and learn than the CMI students.  相似文献   

10.
PlantingScience is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific factors contributing to the program’s effectiveness in engaging students. Using multiple data sources, grounded theory (Strauss and Corbin in Basics of qualitative research. Sage, Newbury Park, 1990) was used to develop a conceptual model identifying the central phenomenon, causal conditions, intervening conditions, strategies, contexts, and student outcomes of the project. Student motivation was determined to be the central phenomenon explaining the success of the program, with student empowerment, online mentor interaction, and authenticity of the scientific experiences serving as causal conditions. Teachers contributed to student motivation by giving students more freedom, challenging students to take projects deeper, encouraging, and scaffolding. Scientists contributed to student motivation by providing explanations, asking questions, encouraging, and offering themselves as partners in the inquiry process. Several positive student outcomes of the program were uncovered and included increased positivity, greater willingness to take projects deeper, better understanding of scientific concepts, and greater commitments to collaboration. The findings of this study provide relevant information on how to develop curriculum, use technology, and train practitioners and mentors to utilize strategies and actions that improve learners’ motivation to engage in authentic science in the classroom.  相似文献   

11.
This study explores the relationships among Taiwanese high school students’ scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling technique was utilized to reveal that the students’ absolutist SEBs led to reproduced COLS (i.e. learning science as memorizing, preparing for tests, calculating, and practicing) while sophisticated SEBs were related to constructive COLS (i.e. learning science as increase of knowledge, applying, and attaining understanding). The students’ reproduced COLS were also negatively associated with surface motive of learning science, whereas the constructive COLS were positively correlated with students’ deep motive of learning science. Finally, this study found that students who viewed scientific knowledge as uncertain (advanced epistemic belief) tended to possess a surface motive of learning science. This finding implies that the implementation of standardized tests diminishes Taiwanese high school students’ curiosity and interest in engaging deeply in science learning.  相似文献   

12.
This article addresses the serious and growing need to improve science instruction and science achievement for all students. We will describe the results of a 3-year study that transformed science instruction and student achievement at two high-poverty ethnically diverse public elementary schools in Texas. The school-wide intervention included purposeful planning, inquiry science instruction, and contextually rich academic science vocabulary development. In combination, these instructional practices rapidly improved student-science learning outcomes and narrowed achievement gaps across diverse student populations.  相似文献   

13.
This paper examines students’ achievement and interest and the extent to which they are predicted by teacher knowledge and motivation. Student achievement and interest are both considered desirable outcomes of school instruction. Teacher pedagogical content knowledge has been identified a major predictor of student achievement in previous research, whereas teacher motivation is considered a decisive factor influencing students’ interest. So far, however, most research either focused on knowledge or motivation (both on the students’ as well as the teachers’ side), rarely investigating them together or examining the instructional mechanisms through which the supposed effects of teacher knowledge and motivation are facilitated. In the present study, N = 77 physics teachers and their classes in Germany and Switzerland are investigated utilizing a multi‐method approach in combining data obtained from test‐instruments (teacher pedagogical content knowledge, student achievement) and questionnaires (teacher motivation, student interest, student perceived enthusiastic teaching) as well as videotaped instruction (cognitive activation rated by observers). Multi‐level structural equation modeling was used to support the assumptions that teacher pedagogical content knowledge positively predicted students’ achievement; the effect was mediated by cognitive activation. Teachers’ motivation predicted students’ interest which was mediated by enthusiastic teaching as perceived by students. Neither did teacher pedagogical content knowledge predict students’ interest, nor teacher motivation students’ achievement. This implies that in order to improve students’ cognitive as well as affective outcomes, both teachers’ knowledge but also their motivation need to be considered. © 2016 The Authors. Journal of Research in Science Teaching Published by Wiley Periodicals, Inc. J Res Sci Teach 54:586–614, 2017  相似文献   

14.
Summer science programs held in university research facilities provide ideal opportunities for pre-college students to master new skills and renew, refresh, and enrich their interest in science. These types of programs have a positive impact on a student's understanding of the nature of science and scientific inquiry and can open a youngster's eyes to the many possible career opportunities in science. This paper describes a study of high school students enrolled in the Summer Science Academy program at the University of Rochester that investigates the program's impact on students' knowledge of laboratory skills, as well as the impact on student interest in pursuing a career in science. Students' exposure to advanced laboratory techniques and their interaction with professional scientists provided them with a very positive hands-on experience. Students who attended the program felt more confident in their ability to use sophisticated laboratory skills and that the Summer Science Academy program provided a positive influence on their performance in advanced science courses, as well as their desire to pursue a career in science.  相似文献   

15.
This study investigated the effects of learner control and program control on the achievement and continuing motivation of high school students. The influence of the availability of computer-delivered instruction on student motivation was also examined. Continuing motivation was measured by student choice of learner control or program control as the mode for a second instructional program after subjects completed an initial program under their randomly assigned mode. Results revealed a highly significant difference in continuing motivation favoring learner over program control. The differences in posttest performance and performance during instruction between learner and program control were not significant. The data also revealed significant preferences to study both science and an alternative subject when they are presented by computer over when they are not.The research reported herein was conducted while she was a doctoral student at Arizona State University.  相似文献   

16.
Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist–teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students’ learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers’ and scientists’ science teaching. A quasi-experimental design was used to understand the impact on students’ scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students’ scientific competency and a large effect on students’ scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.  相似文献   

17.
Korean students have shown relatively little interest and confidence in learning science, despite being ranked in the top percentile in international evaluations of academic achievement in science such as the Trends in International Mathematics and Science Study. Although research indicates a positive relationship between student perceptions of science and their science learning, this area has not been sufficiently explored in Korea. Particularly, even though both students' perceptions of scientific practice and their understanding of the nature of science (NOS) are influenced by their science learning experiences at schools, little research examines how this perception, understanding, and experience are related to one another. This study aimed to uncover Korean students' perceptions of school scientific practice through exploring their drawings, writings, and responses to questionnaires. Participants were 500 Korean students in 3rd, 7th, and 10th grades who were asked to complete an open-ended questionnaire. The results indicated that Korean students typically viewed school scientific practices as experimental activities or listening to lecture; and that most participants held an insufficient understanding of the NOS. Overall, no significant relationship emerged between students' perceptions of school scientific practice and their understanding of the NOS. Our findings highlight the need to help both teachers and students understand the potential breadth of school scientific practices, beyond simple ‘activity mania.’ This study also suggests that teachers must balance implicit and explicit instructional approaches to teaching about the NOS through scientific practices in school science contexts.  相似文献   

18.
The present study aimed to identify the role of both student- and school-level characteristics in primary school students’ achievement in the science curriculum. As societies become more culturally and linguistically diverse, many students enter the classroom with a home language that is different from the language of instruction used at school. This study takes into account both the home language and literacy in the language of instruction in relation to student achievement in science subjects. Questionnaires, reading performance tests, and science achievement tests were administered to 1,761 fourth-grade students from 67 schools across Flanders (Belgium). Multilevel hierarchical regression analyses show that the home language and literacy in the language of instruction play an important role in science achievement at the student level, next to gender and socioeconomic status. Students with a home language that is different from the language of instruction experience difficulties with science subjects. Moreover, the higher students’ performance on reading comprehension and self-assessed proficiency in the language of instruction, the higher their score on science achievement tests. At the school level, a school's teachability expectations are one of the key factors related to students’ science achievement. Limitations of this study and future directions for research are discussed.  相似文献   

19.
This study aims to investigate the applicability of context- and problem-based learning (C-PBL) into teaching thermodynamics and to examine its influence on the students’ achievements in chemistry, retention of knowledge, students’ attitudes, motivation and interest towards chemistry. The embedded mixed method design was utilized with a group of 13 chemistry students in a 2-year program of “Medical Laboratory and Techniques” at a state university in an underdeveloped city at the southeastern region of Turkey. The research data were collected via questionnaires regarding the students’ attitudes, motivation and interest in chemistry, an achievement test on “thermodynamics” and interviews utilized to find out the applicability of C-PBL into thermodynamics. The findings demonstrated that C-PBL led a statistically significant increase in the students’ achievement in thermodynamics and their interest in chemistry, while no statistically significant difference was observed in the students’ attitudes and motivation towards chemistry before and after the intervention. The interviews revealed that C-PBL developed not only the students’ communication skills but also their skills in using time effectively, making presentations, reporting research results and using technology. It was also found to increase their self-confidence together with the positive attitudes towards C-PBL and being able to associate chemistry with daily life. In light of these findings, it could be stated that it will be beneficial to increase the use of C-PBL in teaching chemistry.  相似文献   

20.
Science fairs have been for many years a popular school activity in North America. They are a venue for the popularization of science and consequently an important encouragement for the pursuit of careers in science or engineering. However, little is known about students?? perceived motives for participating in local or national science fairs and about the way in which their involvement mediates their interest in science learning and scientific careers. The present study investigates the motivational factors associated with the high school students?? decision to participate in the 2008 Canada-Wide Science Fair, a thoroughly selected and highly motivated group. Our study examines 5 sources of motivation: (1) interest in science content, (2) sense of self-efficacy, (3) assurance of achievement through rewards or gratifications, (4) the social aspect of participating and (5) working strategies to gain scientific knowledge and methods. The understanding of the anticipated benefits participants seek through their involvement in science fairs may have the potential to help science teachers adapt instruction to appeal to a broader range of students in schools, thus nourishing the emergence of more interest in science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号