首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Much research has shown that a science teacher’s beliefs are related to their teaching practice. This line of research has often defined “belief” epistemologically. That is, beliefs are often defined relative to other mental constructs, such as knowledge, dispositions, or attitudes. Left unspecified is the role beliefs play in cognition and how they come to influence science teachers’ classroom practice. As such, researchers and science teacher educators have relied on an (at times, implicit) assumption that there is a direct causal relationship between teachers’ beliefs and classroom practice. In this paper, we propose an operational, as opposed to epistemological, definition of belief. That is, we are explicit about the role a belief plays in science teachers’ cognition and how that leads to classroom practice. We define a belief as a mental representation that influences the practice of a teacher if and only if the belief is active in cognition. We then turn our attention to two limitations in the literature on that have arisen via previous definitions and assumptions regarding science teacher beliefs, showing how defining beliefs operationally helps think about these issues in new ways. The two limitations surround: (1) the difficulty in precisely delineating belief from knowledge; and (2) the interconnectedness of beliefs such that they draw meaning from one another. We then show how our definition of beliefs is congruent with other models of teacher cognition reported in the literature. Finally, we provide implications arising from this definition of belief for both science teacher educators and those who conduct research on the beliefs of both preservice and in-service science teachers.  相似文献   

2.
3.
Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators’ conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to prospective science teachers. Among a total of twenty NOS elements considered by the Chinese science teacher educators to be important ideas to be taught, five were suggested by no less than a half of the educators. They are (1) empirical basis of scientific investigation, (2) logics in scientific investigation, (3) general process of scientific investigation, (4) progressive nature of scientific knowledge, and (5) realist views of mind and natural world. This paper discusses the influence of Marxism, a special socio-cultural factor in China, on Chinese science teacher educators’ conceptions of NOS content to be taught to prospective science teachers. We argue the importance of considering ideological traditions (mainly those in general philosophy and religion) when interpreting views of NOS or its content to be taught in different countries and regions and understanding students’ conceptual ecology of learning NOS.  相似文献   

4.
Science and scientific thinking have not made a substantial impact on educational practice. In this discussion, we examine the relationship between science and education and delineate four reasons for characterizing science as an uninvited guest in schools: (a) Science is not highly regarded in society; (b) good science and bad science are often mistaken for one another; (c) the amount of current data is overwhelming; and (d) science is not easy for those who practice it (researchers), those who translate it (teacher educators), or those who consume it (teachers). We suggest several strategies to improve this relationship, including promoting standards of educational practice, emphasizing the role of teacher educators as translators of the research base into classroom practice, and linking student outcomes with the use of effective instructional practices.  相似文献   

5.
Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England’s national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students’ religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators’ own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.  相似文献   

6.
Between the 1980s and 2007, Portugal used to have one-stage (5-year period) initial teacher education (ITE) programs. In 2007 and consistent with the Bologna process guidelines, Portuguese teacher education moved toward a two-stage model, which includes a 3-year undergraduate program of subject matter that leads to a licenciatura (or bachelor) degree and a 3-year professional master in the teaching of a subject. The way that teacher educators perceive the ITE programs effects the education of prospective teachers and consequently the future of science education. This paper aims at analyzing how science teacher educators perceived the changes that took place in this formal way of educating junior school (7th–9th grades) and high school (10th–12th grades) science teachers in Portugal, due to the implementation of the Bologna guidelines. To attain the objectives of the study, 33 science teacher educators including science specialists and science education specialists answered an open-ended online questionnaire, which focused on the strengths and weaknesses of the pre- and post-Bologna ITE programs, the overall quality of teacher education and measures for improving ITE. The results indicate that science teacher educators were quite happy with all of the ITE models, but they expressed the belief that both the science and the teaching practice components should be strengthened in the post-Bologna masters in teaching. Meanwhile, changes were introduced in Portuguese educational laws, and they proved to be consistent with the opinions of the participants. However, the professional development of teacher educators along with evidence-based ITE programs seems to be necessary conditions for overcoming the challenges that teacher education is still facing in Portugal and worldwide.  相似文献   

7.
This study explores whether the religious background of students affects their opinions about and attitudes to engaging with scientific explanations of the origins of the universe and of life. The study took place in four English secondary schools representing three different contexts (Christian faith-based; non-faith with majority Muslim catchment; and non-faith, mixed catchment). It comprised questionnaires and focus groups with over 200 students aged 14–16, supplemented by teacher interviews. The analysis approach was informed by grounded theory and resulted in the development of an engagement typology, which has been set in the context of the cross-cultural border crossing literature. It divides students into categories depending on both the nature and amount of engagement they were prepared to have with the relationship between science and religion. The model takes into account where students sit on four dimensions. These assess whether a student's preferred knowledge base is belief-based or fact-based; their tolerance of uncertainty (do they have a need for resolution?); their open mindedness (are they unquestioning or inquiring?); and whether they conceptualise science and religion as being in conflict or harmony. Many Muslim students resisted engagement because of conflicting religious beliefs. Teachers did not always appreciate the extent to which this topic troubled some students who needed help to accommodate clashes between science and their religious beliefs. It is suggested that increased appreciation of the complexity represented by their students can guide a teacher towards an appropriate approach when covering potentially sensitive topics such as the theory of evolution.  相似文献   

8.
In this summative discussion, we respond to Crockett's proposals about supporting science in the schoolhouse, and we summarize and reflect on the perspectives of the commentators. Overall, they identify discussion points in issues of science in schooling, implementation of scientific practices, teacher training and professional development, and issues in educational administration and leadership. We agree with Crockett and the commentators that intensive efforts in all these areas must be made to strengthen the role of science in the schoolhouse.  相似文献   

9.
10.

The seven articles that comprise this Special Issue examine the professional growth of mathematics and science teacher educators across different contexts and different foci of who is the teacher educator being studied. Despite these differences, a common thread running throughout these seven articles is the need for learning to be situated in collaboration with others. In this final article, we examine the contribution of these articles through two perspectives: that of the collaborative contexts supporting the professional growth of mathematics and science teacher educators, and the role of disciplinary knowledge as part of the purpose for teacher educators’ professional growth. We notice that collaboration can take on very different structures in supporting teacher educators’ professional learning due to the different purposes and roles of the teacher educators in the studies. We also notice that while collaboration figures as an important component in all of the studies, the disciplinary specific aspects of collaboration, i.e., how collaboration might be negotiated differently by teacher educators in mathematics and science, is still not well understood. Overall, these articles provide important insights that help to shed new light on the complex and multifaceted nature of teacher educators’ learning and growth and provide productive avenues for future research.

  相似文献   

11.
In this study, we examined the discursive and social practices of a teacher educator (the first author) and her eight beginning science teachers in a course on the nature of science and issues of equity and diversity. We focused our investigation on beginning science teachers' views of science and science teaching, as well as the grounds they offered for their views. We organized our discussion of the nature of science, teacher learning, and grounds for views along three dimensions: personal, social, and political. We found that beginning teachers routinely drew from only one of these three dimensions to support their views of the nature of science and ways to represent science to all students. In our implications, we recommend that teacher educators encourage teacher learners to examine personal, social, and political grounds carefully and critically in the process of constructing or revising their views. We argue that attention to these three dimensions of grounds for views will assist beginning teachers in adopting nature of science positions that are broad and complex, that more clearly reflect the goals of equity and excellence, and thus, that hold greater promise for achieving a science education inclusive of all students. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 53–76, 2003  相似文献   

12.
Reading the interesting article Discerning selective traditions in science education by Per Sund, which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.  相似文献   

13.
This study has two purposes: the first is to explore experienced science teachers’ perspectives on inquiry teaching, and the second is to categorize these perspectives into patterns. Fifteen junior high school science teachers experienced at inquiry teaching were selected, and a semi-structured interview was conducted to collect the teachers’ perspectives on inquiry and inquiry teaching. The findings indicate that these experienced science teachers hold multiple perspectives on inquiry and inquiry teaching. The two patterns generated from these teachers’ perspectives of inquiry and inquiry teaching were systematic-based inquiry instruction and learning-based inquiry instructions. Suggestions for science teacher educators are discussed in this paper.  相似文献   

14.
As teacher educators, we are tasked with preparing prospective teachers to enter a field that has undergone significant changes in student population and policy since we were K-12 teachers. With the emphasis placed on connections, mathematics integration, and communication by the New Generation Science Standards (NGSS) (Achieve in Next generation science standards, 2012), more research is needed on how teachers can accomplish this integration (Bunch in Rev Res Educ 37:298–341, 2013; Lee et al. in Educ Res 42(4):223–233, 2013). Science teacher educators, in response to the NGSS, recognize that it is necessary for pre-service and in-service teachers to know more about how instructional strategies in language and science can complement one another. Our purpose in this study was to explore a model of integration that can be used in classrooms. To do this, we examined the change in science content knowledge and academic vocabulary for English language learners (ELLs) as they engaged in inquiry-based science experience utilizing the 5R Instructional Model. Two units, erosion and wind turbines, were developed using the 5R Instructional Model and taught during two different years in a summer school program for ELLs. We analyzed data from interviews to assess change in conceptual understanding and science academic vocabulary over the 60 h of instruction. The statistics show a clear trend of growth supporting our claim that ELLs did construct more sophisticated understanding of the topics and use more language to communicate their knowledge. As science teacher educators seek ways to prepare elementary teachers to help preK-12 students to learn science and develop the language of science, the 5R Instructional Model is one pathway.  相似文献   

15.
I argue that there is potential for collaborative work between science educators and citizenship educators. However, following comments about that potential, I raise a number of challenges. Those challenges relate to the public perception of science, narrow academic perspectives of some science educators, and problematic attempts to develop a form of science education that, at times, some have claimed is relevant to — or, even, a form of — citizenship education. The latter point is considered with reference to some science educators’ perceptions concerning the nature of citizenship and citizenship education. I argue that the perceptions of some science educators seem to suggest significant differences in understanding from at least some of those who would regard themselves as citizenship education specialists. In the final main section of the article, I suggest, briefly, some ways in which further work to develop collaboration between science educators and citizenship educators could be considered.  相似文献   

16.
The work of science is a linguistic act. However, like history and philosophy of science, language has frequently been isolated from science content due to factors such as school departmentalization and narrow definitions of what it means to teach, know, and do science. This conceptual article seeks to recognize and recognize—to understand and yet rethink—science content in light of the vision of science expected by academic standards. Achieving that vision requires new perspectives in science teaching and teacher education that look into the role that science language expectations play in science content. These perspectives reposition attention to language from a hidden, overlooked, or outsourced aspect of science teaching, to one at its core. To help bring teachers and teacher educators into this integrative view of science content, this article offers a mirror, a prism, and a lens as three metaphorical tools to explore the essential roles that language plays for, in, and as science content. The reflection, refraction, and refocusing of science content reveal complex science language expectations that function alongside facts, figures, and formulas of science as gatekeeping mechanisms that, once noticed, cannot be ignored or marginalized in science teaching and science teacher education.  相似文献   

17.
18.
The shortage of science teachers has spurred a discussion about their retention and recruitment. While discussion about retaining science teachers has increased dramatically in just the last few years, science teacher educators have not attended to the recruitment of science teachers with the same tenacity. This paper is our effort to initiate this discussion and to focus on secondary science teachers. We begin by suggesting why recruitment is important and explore related research. We then suggest a comprehensive and strategic orientation towards recruitment that serves as a mechanism to examine current practices in the field. In presenting this position paper, we hope that science teacher educators will contemplate their own recruitment practices and begin discussing the recruitment process more openly with one another.  相似文献   

19.
Although the concept of “rural” is difficult to define, rural science education provides the possibility for learning centered upon a strong connection to the local community. Rural American adolescents tend to be more religious than their urban counterparts and less accepting of evolution than their non-rural peers. Because the status and perception of evolutionary theory may be very different within the students’ lifeworlds and the subcultures of the science classroom and science itself, a cultural border crossing metaphor can be applied to evolution teaching and learning. This study examines how a teacher may serve as a cultural border crossing tour guide for students at a rural high school as they explore the concept of biological evolution in their high school biology class. Data collection entailed two formal teacher interviews, field note observations of two biology class periods each day for 16 days during the Evolution unit, individual interviews with 14 students, student evolution acceptance surveys, student evolution content tests, and classroom artifacts. The major findings center upon three themes regarding how this teacher and these students had largely positive evolution learning experiences even as some students continued to reject evolution. First, the teacher strategically positioned himself in two ways: using his unique “local” trusted position in the community and school and taking a position in which he did not personally represent science by instead consistently teaching evolution “according to scientists.” Second, his instruction honored local “rural” funds of knowledge with respect to local knowledge of nature and by treating students’ religious knowledge as a form of local expertise about one set of answers to questions also addressed by evolution. Third, the teacher served as a border crossing “tour guide” by helping students identify how the culture of science and the culture of their lifeworlds may differ with respect to evolutionary theory. Students negotiated the cultural borders for learning evolution in several ways, and different types of border crossings are described. The students respected the teacher’s apparent neutrality, sensitivity toward multiple positions, explicit attention to religion/evolution, and transparency of purposes for teaching evolution. These findings add to the current literature on rural science education by highlighting local funds of knowledge for evolution learning and how rural teachers may help students navigate seemingly hazardous scientific topics. The study’s findings also add to the current evolution education literature by examining how students’ religious perspectives may be respected as a form of expertise about questions of origins by allowing students to examine similarities and differences between scientific and religious approaches to questions of biological origins and change.  相似文献   

20.
The 2003 National Science Teachers Association Standards for Science Teacher Preparation (NSTA-SSTP) were developed to provide guidelines and expectations for science teacher preparation programs. This article is the fourth in a special JSTE series on accreditation written to assist science teacher educators in meeting the NSTA-SSTP. In this article, the authors discuss pedagogical content knowledge and how this is expressed in the NSTA-SSTP. Included are competencies and examples needed for a science teacher preparation program to document developing pedagogical content knowledge in preservice science teachers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号