首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anatomical knowledge is commonly assessed by practical examinations that are often administered in summative format. The format of anatomy practical examination was changed at the Lee Kong Chian School of Medicine in Singapore from summative (graded; must pass) to formative (ungraded; no pass/fail) in academic year (AY) 2017–2018. Both assessment formats were undertaken online, but the formative mode used a team-based learning activity comprising individual and team assessments. This gave an unique opportunity to investigate: (1) the impact of two different online assessment formats on student performance in practical examination; (2) the impact of new formative practical examination on students’ performance in summative examinations; and (3) students’ opinions of these two practical examination formats. The class of 2021 perceptions was obtained as they experienced both formats. A retrospective cohort study was also conducted to analyze the Year 2 students’ performance in anatomy practical and year-end summative examinations of cohorts AY 2015–2016, AY 2016–2017 (summative format), and AY 2017–2018 (formative format). There were no significant differences in students’ performance between two practical examination formats. The cohort who experienced the formative format, performed significantly better in summative examinations (mean ± SD: 82.32 ± 10.22%) compared with the cohort who experienced the summative format (73.77 ± 11.09%) (P < 0.001). Students highlighted positive features of the formative practical examination, including team reinforcement of learning, instant feedback, and enhanced learning. These findings indicate that students continue to study for anatomy practical examination without the need for external drivers. The team-based learning style practical examination enhances students’ performance in summative examinations.  相似文献   

2.
The implementation of an integrated medical neuroscience course by technologically pivoting an in-person neuroscience course to online using an adaptive blended method may provide a unique approach for teaching a medical neuroscience course during the Covid-19 pandemic. An adaptive blended learning method was developed in response to the requirements necessitated by the Covid-19 pandemic. This model combined pedagogical needs with digital technology using online learning activities to implement student learning in a medical neuroscience course for year one medical students. This approach provided medical students with an individually customized learning opportunity in medical neuroscience. The students had the complete choice to engage the learning system synchronously or asynchronously and learn neuroscience materials at different locations and times in response to the demands required to deal with the pandemic. Students' performance in summative and formative examinations of the adaptive blended learning activities were compared with the previous performance obtained the previous year when the contents of the medical neuroscience course were implemented using the conventional “face-to-face” learning approach. While the cohort of our students in 2019 and 2020 changed, the contents, sessions, volume of material, and assessment were constant. This enabled us to compare the results of the 2019 and 2020 classes. Overall, students' performance was not significantly different between the adaptive blended learning and the in-person approach. More students scored between 70% and 79% during the adaptive blended learning compared with in-class teaching, while more students scored between 80% and 89% during the in-person learning than during the adaptive blended learning. Finally, the percentage of students that scored >90% was not significantly different for both Years 2019 and 2020. The adaptive blended learning approach was effective in enhancing academic performance for high-performing medical students. It also permitted the early identification of underachieving students, thereby serving as an early warning sign to permit timely intervention.  相似文献   

3.
This article describes the development of an interactive computer‐based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self‐directed group interactivities that actively engage students during laboratory sessions. The design of the manual includes guided instruction for students to navigate virtual slides, exercises for students to monitor learning, and cases to provide clinical relevance. At the end of the laboratory activities, student groups can generate a laboratory report that may be used to provide formative feedback. The instructional value of the manual was evaluated by a questionnaire containing both closed‐ended and open‐ended items. Closed‐ended items using a five‐point Likert‐scale assessed the format and navigation, instructional contents, group process, and learning process. Open‐ended items assessed student's perception on the effectiveness of the manual in facilitating their learning. After implementation for two consecutive years, student evaluation of the manual was highly positive and indicated that it facilitated their learning by reinforcing and clarifying classroom sessions, improved their understanding, facilitated active and cooperative learning, and supported self‐monitoring of their learning. Anat Sci Educ 6: 342–350. © 2013 American Association of Anatomists.  相似文献   

4.
Recently, faculty at Pritzker School of Medicine, The University of Chicago, have made efforts to improve the depth of radiological anatomy knowledge that students have, but no insights exist as to student and resident opinions of how clinically helpful deep anatomical understanding is. A single‐institution survey of second‐ and fourth‐year medical students and postgraduate year 1–4 residents from 11 specialties, composed of five‐point Likert questions, sample examination questions, and narrative response questions, was distributed in 2015. One hundred seventy‐seven of the 466 potential respondents replied (71 residents and 106 students), response rate 38.0%. No nonresponse bias was present in two separate analyses. Respondents generally favored a superficial “identification” question as more relevant to clinical practice, which was positively associated with increasing clinical experience ρ = 0.357, P < 0.001 by point‐biserial correlation. Students and residents most commonly used self‐directed methods to learn medical imaging during their medical anatomy courses (72.6 and 57.7%, respectively). Small group education was least commonly used by students and residents (45.3 and 39.4%, respectively), but most commonly recommended (62.3 and 69%, respectively). A total of 56.6 and 64.8% of students and residents, respectively, reported that having multiple learning methods was “quite” or “extremely” important. Respondents with more clinical experience were more likely to report that a superficial identification question was more clinically relevant than a question testing deeper radiological anatomy knowledge. Small group learning was preferred among students and residents but was the least commonly employed method of instruction. Both findings contrast starkly with current radiological anatomy instructional understanding and practices. Anat Sci Educ 11: 25–31. © 2017 American Association of Anatomists.  相似文献   

5.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

6.
This study used qualitative and quantitative approaches to evaluate the effectiveness of self‐learning modules (SLMs) developed to facilitate and individualize students' learning of basic medical sciences. Twenty physiology and nineteen microanatomy SLMs were designed with interactive images, animations, narrations, and self‐assessments. Of 41 medical students, 40 students voluntarily completed a questionnaire with open‐ended and closed‐ended items to evaluate students' attitudes and perspectives on the learning value of SLMs. Closed‐ended items were assessed on a five‐point Likert scale (5 = high score) and the data were expressed as mean ± standard deviation. Open‐ended questions further evaluated students' perspectives on the effectiveness of SLMs; student responses to open‐ended questions were analyzed to identify shared patterns or themes in their experience using SLMs. The results of the midterm examination were also analyzed to compare student performance on items related to SLMs and traditional sessions. Students positively evaluated their experience using the SLMs with an overall mean score of 4.25 (SD ± 0.84). Most students (97%) indicated that the SLMs improved understanding and facilitated learning basic science concepts. SLMs were reported to allow learner control, to help in preparation for subsequent in‐class discussion, and to improve understanding and retention. A significant difference in students' performance was observed when comparing SLM‐related items with non‐SLM items in the midterm examination (P < 0.05). In conclusion, the use of SLMs in an integrated basic science curriculum has the potential to individualize the teaching and improve the learning of basic sciences. Anat Sci Educ 3: 219–226, 2010. © 2010 American Association of Anatomists.  相似文献   

7.
Many new methods have contributed to the learning of anatomy, including several interactive methods, increasing the effectiveness of educational programs. The effectiveness of an educational program involving several interactive learning methods such as problem-based learning and reciprocal peer teaching was researched in this study. A quasi-experimental before–after study on three consecutive groups of second-year students at the Grenoble School of Medicine was conducted. The lectures were replaced by an educational program based on the problem-based learning method and reciprocal peer teaching. The first session was dedicated to reading clinical cases illustrating the medical concept, so that the learning objectives for the second session could be set. Then, after viewing digital courses, the second session was dedicated to a synthetic presentation by the students themselves, followed by an interactive summary with the teacher. The analysis of 630 students showed a significant increase in the theory test results for those who took part in the intervention: 9.71 versus 9.19 (β = 0.57, P = 0.036). Moreover, satisfaction was high after the intervention (mean = 4.5/5), and when comparing the two pedagogical approaches the students showed a clear preference for the program implemented with the concepts highlighted such as interactivity, in-depth work, group work, and autonomy. A multifaceted interactive pedagogy program could have a significant impact on the results of the theoretical concepts presented and on satisfaction as well as increased investment by students in learning anatomy.  相似文献   

8.
Students enrolled in the Optometry program at the University of Manchester are required to take a functional anatomy course during the first year of their studies. Low mean scores in the written examination of this unit for the past two academic years energized staff to rethink the teaching format. Interactive sessions lasting 20 minutes each were introduced during the two hour lecture sessions. In these sessions students reinforced their anatomical knowledge learned in lectures, through playing games such as anatomy bingo and solving anatomical anagrams. In addition, five e‐learning modules were also introduced for students to complete in their own time. A pre‐ and postcourse questionnaire were distributed to obtain student views on their expectations of the course and interactive sessions. Comparisons were made between written examination results from 2008 to 2009 to written examination results from the previous five academic years to see if the interactive sessions and e‐learning modules had any impact on student knowledge. In addition, comparisons were made between student performances on the functional anatomy course with their performance in all of the other assessments taken by the students during their first year of study. Analysis of the questionnaires showed that student's expectations of the course were fulfilled and the interactive sessions were well received by the majority. There was a significant increase (P ≤ 0.01) in the mean examination score in 2008–2009 after introduction of the interactive sessions and e‐learning modules compared with scores in previous years. The introduction of interactive sessions has increased student enjoyment of the module and along with the e‐learning modules have had a positive impact on student examination results. Anat Sci Educ 3:39–45, 2010. © 2009 American Association of Anatomists.  相似文献   

9.
Tuebingen's Sectio Chirurgica (TSC) is an innovative, interactive, multimedia, and transdisciplinary teaching method designed to complement dissection courses. The Tuebingen's Sectio Chirurgica (TSC) allows clinical anatomy to be taught via interactive live stream surgeries moderated by an anatomist. This method aims to provide an application‐oriented approach to teaching anatomy that offers students a deeper learning experience. A cohort study was devised to determine whether students who participated in the TSC were better able to solve clinical application questions than students who did not participate. A total of 365 students participated in the dissection course during the winter term of the 2012/2013 academic year. The final examination contained 40 standard multiple‐choice (S‐MC) and 20 clinically‐applied multiple‐choice (CA‐MC) items. The CA‐MC items referred to clinical cases but could be answered solely using anatomical knowledge. Students who regularly participated in the TSC answered the CA‐MC questions significantly better than the control group (75% and 65%, respectively; P < 0.05, Mann‐Whitney U test). The groups exhibited no differences on the S‐MC questions (85% and 82.5%, respectively; P > 0.05). The CA‐MC questions had a slightly higher level of difficulty than the S‐MC questions (0.725 and 0.801, respectively; P = 0.083). The discriminatory power of the items was comparable (S‐MC median Pearson correlations: 0.321; CA‐MC: 0.283). The TSC successfully teaches the clinical application of anatomical knowledge. Students who attended the TSC in addition to the dissection course were able to answer CA‐MC questions significantly better than students who did not attend the TSC. Thus, attending the TSC in addition to the dissection course supported students' clinical learning goals. Anat Sci Educ 10: 46–52. © 2016 American Association of Anatomists.  相似文献   

10.
The various psychological dimensions of professional identity formation (PIF) are an important aspect of the study course for undergraduate medical students. Anatomical learning environments have been repeatedly shown to play a critical role in forming such an identity; however, relevance of PIF during sonoanatomical training remains underexplored. At the end of their basic anatomy studies, third-semester medical students took part in a four-day block course on anatomy and imaging. Anatomical content was revised in small groups using peer teaching and imaging methods, including one hour of hands-on sonoanatomy sessions each day. On-site sonoanatomy was identified as an excellent format to support students' transition from the pre-clinical to clinical phase as medical experts-to-be. Students enjoyed practical exercises and the clinical input, which increased their interest in the medical profession and their academic studies. This study further examined the effects of the transition into an online-only format, necessitated by the current Covid-19 pandemic. A comparison was made between the quantitative and qualitative evaluation data, and the written results of examinations of several on-site (n = 1096, mean age = 22.4 years ± 2.18), and online-only cohorts (n = 230, mean age = 22.6 years ± 2.21). The online-only transition led to a reduction of all PIF-related variables measured, losing identity-related variables, increasing students' stress levels, and reducing their long-term academic performance. Together, this study demonstrates presence of PIF in undergraduate sonoanatomy teaching, and cautions against the uncritical online-only substitution of hands-on learning environments.  相似文献   

11.
A novel three-dimensional tool for teaching human neuroanatomy   总被引:1,自引:0,他引:1  
Three‐dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross‐sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first‐year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color‐coded physical models of the periventricular structures, while the control group re‐examined 2D brain cross‐sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F1,85= 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

12.
Computer‐aided learning (CAL) is an integral part of many medical courses. The neuroscience course at Oxford University for medical students includes CAL course of neuroanatomy. CAL is particularly suited to this since neuroanatomy requires much detailed three‐dimensional visualization, which can be presented on screen. The CAL course was evaluated using the concept of approach to learning. The aims of university teaching are congruent with the deep approach—seeking meaning and relating new information to previous knowledge—rather than to the surface approach of concentrating on rote learning of detail. Seven cohorts of medical students (N = 869) filled in approach to learning scale and a questionnaire investigating their engagement with the CAL course. The students' scores on CAL‐course‐based neuroanatomy assessment and later university examinations were obtained. Although the students reported less use of the deep approach for the neuroanatomy CAL course than for the rest of their neuroanatomy course (mean = 24.99 vs. 31.49, < 0.001), deep approach for CAL was positively correlated with neuroanatomy assessment performance (r = 0.12, < 0.001). Time spent on the CAL course, enjoyment of it, the amount of CAL videos watched and quizzes completed were each significantly positively related to deep approach. The relationship between deep approach and enjoyment was particularly notable (25.5% shared variance). Reported relationships between deep approach and academic performance support the desirability of deep approach in university students. It is proposed that enjoyment of the course and the deep approach could be increased by incorporation of more clinical material which is what the students liked most. Anat Sci Educ 10: 560–569. © 2017 American Association of Anatomists.  相似文献   

13.
This paper discusses the development of an interactive approach to teaching and assessing a microanatomy curriculum in an innovative medical school program. As an alternative to lectures and labs, students are engaged in interactive seminars focused on discussion of clinical and research‐based cases matched with normal histology and pathology slides. A virtual microscopic system is used rather than the traditional glass slide and light microscope. Evaluation of student performance consists of self‐assessment board style questions, concept appraisal problems, and utilization of a portfolio system where the assessment pieces are continuously integrated as part of written formative and summative assessments. Anat Sci Ed 1:102–105, 2008. © 2008 American Association of Anatomists.  相似文献   

14.
The authors describe and evaluate a method to motivate medical students to maximize the effectiveness of dissection opportunities by using In‐Course‐Assessments (ICAs) to encourage teamwork. A student's final mark was derived by combining the group dissection mark, group mark for questions, and their individual question mark. An analysis of the impact of the ICA was performed by comparing end of module practical summative marks in student cohorts who had, or had not, participated in the ICAs. Summative marks were compared by two‐way ANOVA followed by Dunnets test, or by repeated measures ANOVA, as appropriate. A cohort of medical students was selected that had experienced both practical classes without (year one) and with the new ICA structure (year two). Comparison of summative year one and year two marks illustrated an increased improvement in year two performance in this cohort. A significant increase was also noted when comparing this cohort with five preceding year two cohorts who had not experienced the ICAs (P <0.0001). To ensure that variation in the practical summative examination was not impacting on the data, a comparison was made between three cohorts who had performed the same summative examination. Results show that students who had undertook weekly ICAs showed significantly improved summative marks, compared with those who did not (P <0.0001). This approach to ICA promotes engagement with learning resources in an active, team‐based, cooperative learning environment. Anat Sci Educ 7: 224–233. © 2013 American Association of Anatomists.  相似文献   

15.
选择安徽电大开放教育2013秋季学期护理学本科专业A班26人为对照班,在护理伦理学教学中采用讲授和案例分析为主的传统教学方法;2013秋季学期B班29人为实验班,采用案例讨论法进行教学。采用形成性考核、期末终结性考核、问卷调查等方法对教学效果进行评价。结果显示,实验班学生面授课到课率较对照班高34.1%;实验班学生的形成性考核作业案例分析成绩和期末终结性考核案例分析成绩显著高于对照班(P <0.01);绝大多数学生认为案例讨论教学法能提升学习主动性、自主学习能力、学习态度、课堂学习效率、沟通能力、语言表达能力、参与意识、对护理伦理问题的敏感性以及分析和解决问题的能力;学习效果满意度达84.0%。  相似文献   

16.
The utilization of bedside ultrasound by an increasing number of medical specialties has created the need for more ultrasound exposure and teaching in medical school. Although there is a widespread support for more vertical integration of ultrasound teaching throughout the undergraduate curriculum, little is known about whether the quality of ultrasound teaching differs if performed by anatomists or clinicians. The purpose of this study is to compare medical students' evaluation of ultrasound anatomy teaching by clinicians and anatomists. Hands‐on interactive ultrasound sessions were scheduled as part of the gross anatomy course following principles of adult learning and instructional design. Seven teachers (three anatomists and four clinicians) taught in each session. Before each session, anatomists were trained in ultrasound by clinicians. Students were divided into groups, rotated teachers between sessions, and completed evaluations. Results indicated students perceived the two groups as comparable for all factors except for knowledge organization and the helpfulness of ultrasound for understanding anatomy (P < 0.001). However, results from unpaired samples t‐tests demonstrated a nonstatistically significant difference between the groups within each session for both questions. Moreover, students' test performance for both groups was similar. This study demonstrated that anatomists can teach living anatomy using ultrasound with minimal training as well as clinicians, and encourage the teaching of living anatomy by anatomists in human anatomy courses using ultrasound. Repeating this study at a multicenter level is currently being considered to further validate our conclusion. Anat Sci Educ 7: 340–349. © 2013 American Association of Anatomists.  相似文献   

17.
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi‐disciplinary care team. This study aimed to create a modified team‐based learning (TBL) environment utilizing ultrasound technology during an interprofessional learning activity to enhance musculoskeletal anatomy knowledge of first year medical (MD) and physical therapy (PT) students. An ultrasound demonstration of structures of the upper limb was incorporated into the gross anatomy courses for first‐year MD (n = 53) and PT (n = 28) students. Immediately before the learning experience, all students took an individual readiness assurance test (iRAT) based on clinical concepts regarding the assigned study material. Students observed while a physical medicine and rehabilitation physician demonstrated the use of ultrasound as a diagnostic and procedural tool for the shoulder and elbow. Following the demonstration, students worked within interprofessional teams (n = 14 teams, 5–6 students per team) to review the related anatomy on dissected specimens. At the end of the session, students worked within interprofessional teams to complete a collaborative clinical case‐based multiple choice post‐test. Team scores were compared to the mean individual score within each team with the Wilcoxon signed‐rank test. Students scored higher on the collaborative post‐test (95.2 ±10.2%) than on the iRAT (66.1 ± 13.9% for MD students and 76.2 ±14.2% for PT students, P < 0.0001). Results suggest that this interprofessional team activity facilitated an improved understanding and clinical application of anatomy. Anat Sci Educ 11: 94–99. © 2017 American Association of Anatomists.  相似文献   

18.
The development of student teachers’ professional identity   总被引:4,自引:3,他引:1  
This study focuses on student teachers’ perceptions of their professional identity. The respondents are students enrolled in a three‐year course in secondary education teaching at bachelor level. Questionnaires were filled out by first‐year, second‐year and third‐year students from two colleges. The questionnaire included four scales: commitment to teaching, professional orientation, task orientation and self‐efficacy. In the first five months of the first‐year course, a shift in students’ task orientation was observed: students developed a more pupil‐centred view on teaching. Practical experience with classroom teaching again caused a shift: students focused less on the subject matter, on maintaining order in the classroom, on the long‐term educational qualification targets and self‐efficacy decreased. Students with work placement experience developed a more ‘realistic’ view of learning and teaching compared to students without this experience. A final important difference in professional identity is based on students’ gender: while male students tend to attach more importance to discipline in the classroom, their female counterparts focus more on student involvement.  相似文献   

19.
The purpose of this paper is to gain insight into the relationships between hands‐on experiences with formative assessment, students’ assessment preferences and their approaches to learning. The sample consisted of 108 university first‐year Bachelor’s students studying criminology. Data were obtained using the Revised two‐factor study process questionnaire (R‐SPQ‐2F) and the Assessment preferences inventory (API). The study shows that differences in assessment preferences are correlated with differences in approach to learning. Students’ preferences for assessment methods with higher‐order thinking tasks are significantly lower after actual experience with a formative assessment. Moreover, students also changed their approaches to learning after hands‐on experience with a formative mode of assessment. Surprisingly, this change evinced a more ‘surface approach’ to learning. Nevertheless, this is in line with other recent research findings. The paper ends with some possible explanations, and new directions for research are proposed.  相似文献   

20.
There is growing demand from accrediting agencies for improved basic science integration into fourth-year medical curricula and inculcation of medical students with teaching skills. The objective of this study was to determine the effectiveness of a fourth-year medical school elective course focused on teaching gross anatomy on anatomical knowledge and teaching confidence. Fourth-year medical student “teacher” participants' gross anatomy knowledge was assessed before and after the course. Students rated their overall perceived anatomy knowledge and teaching skills on a scale from 0 (worst) to 10 (best), and responded to specific knowledge and teaching confidence items using a similar scale. First-year students were surveyed to evaluate the effectiveness of the fourth-year student teaching on their learning. Thirty-two students completed the course. The mean anatomy knowledge pretest score and posttest scores were 43.2 (±22.1) and 74.1 (±18.4), respectively (P < 0.001). The mean perceived anatomy knowledge ratings before and after the course were 6.19 (±1.84) and 7.84 (±1.30), respectively (P < 0.0001) and mean perceived teaching skills ratings before and after the course were 7.94 (±1.24) and 8.53 (±0.95), respectively (P = 0.002). Student feedback highlighted five themes which impacted fourth-year teaching assistant effectiveness, including social/cognitive congruence and improved access to learning opportunities. Together these results suggest that integrating fourth-year medical students in anatomy teaching increases their anatomical knowledge and improves measures of perceived confidence in both teaching and anatomy knowledge. The thematic analysis revealed that this initiative has positive benefits for first-year students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号