首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
一、辨别一元二次方程例 1 方程x4+ax3-x2 +a2 -1 =0是否是一元二次方程 ?如果是 ,指出各项系数 ;如果不是说明理由 .解 当x为常数时 ,此方程是关于a的一元二次方程 ,化为一般形式是a2 +x3a+x4-x2 -1 =0 ,其中二次项系数为 1 ,一次项系数为x3,常数项为x4-x2 -1 .二、判别根的情形例 2 判别关于x的方程k2 x2 -( 2k+1 )x+1 =0的根的情况 .解 当k =0时 ,方程变为 -x +1 =0 ,原方程只有一个实数根 1 ;当k≠ 0时 ,∵Δ =[-( 2k+1 ) ]2 -4k2=4k+1 .∴当k>-14 ,且k≠ 0时 ,原方程有两个不相等的实数根 ;当k=14 时 ,原方程有两个相等的实数根 ;…  相似文献   

2.
<正>已知一元二次方程解的情况,我们可以利用根的判别式求方程中参数的取值范围.而在学习了二次函数的图象和性质后,我们更习惯采用数形结合的方法来解决问题.下面通过一例说明和比较这两种方法的运用.例题二次函数y=ax2+bx+c(a≠0),(a,b,c为常数)的图象如图1所示.(1)若方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围;(2)若方程ax2+bx+c=k(a≠0)有两个相等的实数根,求k的值;(3)若方程ax2+bx+c=k(a≠0)没有实数根,求k的取值范围.  相似文献   

3.
题目:当k为何值时,方程(k2-1)x2+2(k+1)x+1=0有实数根?四位同学采取了如下四种不同的解法。甲的解法:∵△=[2(k+1)]2-4(k2-1)=8k+8.∴当8k+8>0,即k>-1时,方程有实数根。乙的解法:∵△=8k+8,∴当8k+8≥0,即k≥-1时,方程有实数根。丙的解法:∵△=8k+8,依题意有:k2-1≠08k+8≥0解之得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有实数根。丁的解法:分别讨论k2-1≠0与k2-1=0两种情:(1)设k2-1≠0,依题意有k2-1≠08k+8≥0解得:k≠±1,k≥-1∴当k>-1且k≠1时,方程有两个实数根;(2)当k=1时,原方程为4x+1=0,有一个实数根;(3)当k=-1时,原方程为0·x+1=0,方程…  相似文献   

4.
要判别有理系数一元二次方程ax~2+bx+c=0(a≠0)有无有理根,只要看它的判别式△=b~2-4ac是不是有理数的完全平方。如果a、b、c是常数,由△是否是平方数立刻可以求得,如果a、b、c不是常数,它的判别式含有参数t,当△=pt+q(p≠0)时,只要令pt+q=k~2,k是有理数,便得t=(k~2-q)/p,原方程根就是有理根,当△=pt~2+qt+k (p≠0)时,问题就没有那么简单了。本文就这种情况介绍求有理系数一元二次方程有理根的方法。预备知识第一,如果p为有理数的完全平方,即p=m~2,可设pt~2+qt+k=(mt±n)~2,整理化简得t=(n~2-k)/(q±2mn),即当(?)的有  相似文献   

5.
六年制重点中学高中数学课本《解析几何》第166页第2题第3小题是:“把参数方程:(t参数,t≠0)化成普通方程,并说明表示什么曲线。”此题结论是:x~2/a~2-y~2/b~2=1在a>0,b>0,条件下它表示双曲线。由此题我们可得到双曲线的另一种参数方程。这里有一个问题,双曲线的这种参数方程如何推导?本文拟对这  相似文献   

6.
一、由方程的定义确定参数例1若(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是().(A)m≠-1;(B)m≠2;(C)m≠-1且m≠2;(D)一切实数.解:由一元二次方程的定义,得m2-m-2≠0,∴(m-2)(m+1)≠0,∴m≠2且m≠-1.故选(C).二、由方程根的定义确定参数例2方程x2-12x-m=0的一个根是2,那么m的值是.解:由方程根的定义,把x=2代入方程,得22-12×2-m=0,解得m=-20.三、由方程根的情况确定参数例3已知关于x的一元二次方程(1-2k)x2-2k+1√x-1=0有两个不相等的实数根,求k的取值范围.解:∵方程有两个不相等的实数根,∴△=(-2k+1√)2-4(1-2k)×(-1)=-4k…  相似文献   

7.
含有参数的二次函数的最大、最小值问题,是近年来高考和竞赛的热点和难点,解题时必须把含有参数的二次函数: y = A1(t) f (x) A2(t) f (x) A3(t) 2 (A1(t) ≠ 0,t 为参数)化为 y = F(z) = A1(t)(z m(t))2 k(t) (z = f (x),t 为参数)(*)的形式,再通过  相似文献   

8.
●第一步关注一元二次方程一般形式ax2 bx c=0(a≠0)中“a≠0”的条件.“a≠0”是一元二次方程一般形式的重要组成部分,只有当a≠0时方程ax2 bx c=0才是一元二次方程.例1下列方程(1)ax2 bx c=0,(2)k2 5k 5=0,(3)(m-3)x2-x-1=0,(4)(m2 3)x2 樤3x-2=0是关于x的一元二次方程的是(只填序号).【分析】(1)、(3)不一定是一元二次方程,应分别添加条件a≠0,m≠3才行;(2)不是关于x的一元二次方程;(4)m2 3>0,是一元二次方程.答案:(4).例2已知关于x的方程(m 樤3)x2-1 2(m-1)x-1=0,m应取何值使方程为一元二次方程或是一元一次方程.【分析】此题要根据一…  相似文献   

9.
在讨论解决一元二次方程 ax2 bx c=0实根问题时 ,初学这方面内容的同学们常出现各类错误 ,集中反映在忽略了方程 ax2 bx c=0的 a和 ,主要有如下四种情况 :一、方程有两个实根时 ,忽略 a≠ 0例 1 已知关于 x的一元二次方程 (1 - 2 k) x2- 2 k 1 x- 1 =0有两个不相等的实数根 ,求 k的取值范围。(2 0 0 0年广西壮族自治区中考题 )错解 :由 =(- 2 k 1 ) 2 - 4 (1 - 2 k) (- 1 )= - 4 k 8>0 ,得 k<2 ,∴当 k<2时 ,原方程有两个不相等的实数根。分析 :错解忽略了有两个实数根就说明这方程是一元二次方程 ,故应有二次项系数 1 - 2 k≠ 0 ,k≠1…  相似文献   

10.
复数三题     
题1.设z∈C,|z|=1但z≠-1,则(t是与Z有关的实数). 因|z|=1,z≠-1,故z=cosθ isinθ,θ≠kπ(k为±1,±3,…).于是,如命t=tg(θ/2),则有  相似文献   

11.
一、明确一元二次方程的真实涵义“只含有一个未知数 ,并且未知数的最高次数是 2的整式方程叫做一元二次方程。”要正确理解这一概念 ,必须明确以下几点 :1.方程两边都是整式 ;2 .方程只含有一个未知数 ;3.在满足 1、2的前提条件下 ,方程经整理可化为 ax2 bx c=0 (a≠ 0 )的一般形式。因此 ,凡指方程 ax2 bx c= 0是一元二次方程 ,必有 a≠ 0 ;反之 ,只有当 a≠ 0时 ,方程 ax2 bx c=0才是一元二次方程。例 1.关于 x、y的方程 :(1)x2 - 1x2 =0 ;(2 ) (x 3) (x- 1) =x2 ;(3) (2 x 1) (2 x- 1) =x;(4 )x2 xy- 4 =0 ;(5 ) x2 - mx(2 x-m - 1)…  相似文献   

12.
在曲线的极坐标方程化到曲线的直角坐标方程时,常用到ρ~2=x~2+y~2。故ρ=±(x~2+y~2)~(1/2)。怎样确定“+”、“-”号?现在举例说明如下: 1.用ρ=(x~2+y~2)~(1/2)的情况。例1.化极坐标方程e~ρ=2+cosθ为直角坐标方程。解.因为2+cosθ≥1,所以原方程中ρ≥0,因此ρ=(x~2+y~2)~(1/2)。由e~ρ=2+cosθ得ρe~ρ=2ρ+ρcosθ。从而原方程可化为 (x~2+y~2)~(1/2)e~((x~2+y~2)~(1/2))=2(x~2+y~2)~(1/2)+x。例2.把极坐标方程ρ=1+cosθ化为直角坐标方程。  相似文献   

13.
一、注意考察未知数的系数例 1 已知关于 x的方程 ( k- 2 ) x2 - 2 ( k- 1) x k 1=0 ,且 k≤ 3。求证 :此方程总有实数根。分析 :已知条件中未知数最高项系数是个含字母的代数式 ,这就意味着该方程不一定是一元二次方程 ,解题时必须就 k的不同取值加以讨论。证明 :当 k- 2 =0时 ,即 k=2时 ,原方程为一元一次方程 :- 2 x 3=0。∴方程有实数根 x=32 。 1当 k- 2≠ 0 ,即 k≠ 2时 ,原方程为一元二次方程。△ =〔- 2 ( k- 1)〕2 - 4 ( k- 2 ) ( k 1)=4 k2 - 8k 4- 4 k2 4k 8=12 - 4 k=4 ( 3- k) ,∵ k≤ 3,∴ 3- k≥ 0 ,即△≥ 0 ,∴方程有两…  相似文献   

14.
由普通方程F(x,y)=0→选择一个参数关系式x=f(t)→代入原方程推出y=g(t)→从而导出参数方程x=f(t) f=g(t)(t是参数),其方法是多种多样的。同一个普通方程,由于选择的参数不同,所得到的参数方程也有不同的形式,但是它们都表示同一条曲线。根据现行教材,普通方程化为参数方程的习题有两种类型: 一种类型,给出参数与x、y中之一的函  相似文献   

15.
拓广线性积分方程φ(x)=f(x)+λ∫bak(x,t)φ(t)dt中参数λ的取值后,方程仍有唯一解,且当k(x,t)可以分离为两函数H(x)与G(t)之积时,该方程解的一般形式为:φ(x)+aH(x)(α为常数).  相似文献   

16.
成人中专试用教材《数学》(李祥伦主编)第二册P_124练习题10第6题是一道带“*”的习题,可以按一般方法求解。在教学实践中,我还给学生介绍了一种更为简便的方法,在此写出供教师们指正。 我们知道,以直线y=0和x=O为渐近线的双曲线方程可表为xy=k(常数k≠0);以直线bx+ay=0和bx-ay=0为渐近线的双曲线方程可表为b~2x~2-a~2y~2=k(常数k≠0)。那么,一般地,以直线A_(1x)+B_(1y)+C_1=0和A_(2x)+B_(2y)+C_2=0为渐近线的双曲线方程是否可表为(A_(1x)+B_(1y)+C_1)(A_(2x)+B_(2y)+C_2)=k(常数k≠0)呢?回答是肯定的。  相似文献   

17.
<正>二次函数的图象是研究二次函数的重要工具,而对于二次函数一般式y=ax2+bx+c(a≠0),我们常利用配方法将其化为顶点式y=a(x-h)2+bx+c(a≠0),我们常利用配方法将其化为顶点式y=a(x-h)2+k(a≠0,h、k为常数)再进行研究.笔者观察发现,许多教师在教学过程中存在一定的问题,本文作一简单剖析,并提出一些教学思考.一、教学设计方面教学中经常发现,当学生拿到学案后,做了复习引入的基础题后,稍加深的题目就束  相似文献   

18.
常看到一些写给中学生的书和数学杂志上介绍直线的参数方程时称经进点P_0(x_0,y_0),倾角为α的直线的参数方程的标准式是:x=x_o tcosα y=y_o tsinα(t是参数),又将这样的形式x=x_o at y=y_o bt(t是参数,a~2 b~2≠1)叫做一般形式.并介绍将一般形式化为标准形式的方法只须在t的系数上除以(a~2 b~2)~(1/2)构成t的系数的平方和为1.即: (t为参数) (※) 为了叙述方便,我们姑且承认其“一般式”和“标准式”的称呼法. 显然,作者称(※)为标准式是认为该方程中参数t的几何意义是直线上P点和P_0(x_0,y_0)点的有向线段的数量.但我认为方程(※)还不一定是直线参数方程的标准式,其原因如下:  相似文献   

19.
徐敏 《高中生》2013,(21):28-29
过点M0(x0,y0)、倾斜角为θ的直线l的参数方程为{x=x0+tcosθ,y=y0+tsinθ(t为参数),其中M(x,y)是直线l上的任意一点.当点M在点M0的上方时,|MM0|=t,当点M在点M0的下方时,|MM0|=-t.课本介绍如何用直线的参数方程求线段长、中点弦的方程,其实,还有很多问题可以利用直线的参数方程来解决.  相似文献   

20.
ax~2+bx+c=0(a、b、c是常数,a≠0)这种形式叫做一元二次方程的一般形式,这里的条件是a≠0.在解决问题时,同学们往往会忽略这一个隐含条件,导致解题失误.例1:已知方程kx~2-(2k+1)x+k=0有两个不相等的实数根,求k的取值范围.错解:因为方程有两个不相等的实数根,所以b~2-4ac>0,即【-(2k+1)】~2-4k~2>  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号