首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 906 毫秒
1.
The mechanism and criterion of crack initiation and propagation of rocks were investigated by many researchers,And the creep behaviour of rocks was also theoretically and experimentally studied by some scientists and engineers.The characteristics of crack initation and propagation of rocks under creep condition.however,are very improtant for rock engineering and still not paid enough attention by researchers,In this paper,the criterion and mechanism of crack initiation and propagation under creep condition were investigated using specimens collected from sandstone rock formations outcropping in the Emei Mountain,the Sichuan Province of China.Cuboid specimens under three point bending were used in this investigation.All specimens were classified into four sorts and used for Mode-I fracutre of creep frcture tests.The experimental result shows that due to creep deformation.rock crack will inevitably initialt and propagate under a load of KI,which is less than fracture toughness KIC but not less than a constant(marked as KIC2),KIC2 indicates the ability of rock to resist crack initiation and propagation under creep conditions and is less than fracture tough ness KIC.defined as creep fracture toughness in this paper,KIC2 should be considered as an importnat parameter on design and computation of rock engineering.The microstructureal mechanism for crack initiation and propagation of rock materials under creep condition was introduced based on competitive model between softening effect and hardening effect,and the validity of test result was explained.The test result was also verified in rheological theory.When KI is more than KIC2 but less than KIC,rock crack will initiate and propagate after a time interval of sustained loading under creep condition.In order to find the relation between duration of sustained lading.which can lead to crack initiation and propagation,and the initial stress intensity factor KI,an unequal0interval time sequence forecasting and predicting model was introduced,and the relation was obtained for homogeneous and isotropic fine-grained red sandstone.Finally a modified fracture toughness formula was given,in which the influence of fracture process zone(FPZ) was fully considered.  相似文献   

2.
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KIC^ini,KIC^un, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer‘s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.  相似文献   

3.
4.
Since the assumption of plane sections cannot be applied to the strain of unbonded tendons in prestressed concrete beams subjected to loadings,a moment-curvature nonlinear analysis method is used to develop analytical programs from stress increases in unbonded tendons at the ultimate limit state.Based on the results of model testing and simulation analysis,equations are proposed to predict the stress increase in tendons at the ultimate state in simple or continuous beams of partially prestressed concrete,considering the loading type,non-prestressed reinforcement index βp,prestressing reinforcement index βs,and span-depth ratio L/h as the basic parameters.Results of 380 beams studied here and test results for 35 simple beams obtained by the China Academy of Building Research were compared with those from prediction equations given in codes and other previous studies.The comparison reveals that the values predicted by the proposed equations agree well with experimental results.  相似文献   

5.
To study the bonding properties between steel strand and concrete at room and cryogenic temperatures, a series of center pullout experiments were conducted on 96 bonding anchorage specimens at the lowest temperature of-165 ℃. The impacts on the bonding property of such parameters as the temperature, concrete strength, the relative concrete cover thickness, and the relative anchorage length were analyzed. The test results indicate that the changes in temperature have a clear effect on the bonding property between steel strand and concrete. As the temperature decreases, the bond stress, which corresponds to a 1 mm slip of steel strand in relation to concrete, and the ultimate bond strength initially increase and subsequently decrease at the inflection point of-80 ℃. The impact of the concrete strength on the bonding property, as shown by the tensile strength and the moisture content interaction, indicates that the bond stress vs concrete strength curve initially increases and later decreases with a decrease in temperature; the bond stress vs concrete cover thickness curve linearly increases, but the bond stress vs anchorage length curve linearly decreases at first and finally levels off.  相似文献   

6.
There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index distinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus developed by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio were investigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic coupling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.  相似文献   

7.
8.
The geometric shapes of specimens are important in impact tensile tests because geometric shapes determine the stress states of the specimens, and precise geometric shapes can obtain proper material properties without non-material factors. The aim of this study was to investigate the 1D form of the stress by changing the length-to-diameter (L/D) ratios of specimens. The experiments were carried out on a split Hopkinson tensile bar (SHTB)-rotating disk indirect bar-bar tensile impact apparatus. The L/D ratios of the LY12CZ specimens used in the test ranged from 1 to 5. Results show that the specimens can be used to obtain exact parameters of materials under the proposed conditions when the L/D ratio is greater than 2. This is because the longer length will reduce or eliminate the effects of the interfaces.  相似文献   

9.
To study the bending strength of mass concrete under dynamic loading, the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of matrix, aggregate and interface between them on meso-level. Dynamic constitutive model considering strain-rate strengthening effect and damage softening effect is adopted to describe the cocrete and meso-element's damage. The failure mechanisms of beam under impact loading, triagle wave load, dynamic load coupling with initial static loading were simulated by using displacement-controlled FEM. Furthermore, stress-strain curve of the specimens and their dynamic bending strength were obtained. The results obtained from numerical simulation agreed well with experimental data.  相似文献   

10.
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.  相似文献   

11.
利用断裂力学方法对含有裂纹混凝土试件的断裂韧度进行了研究。通过预制不同裂纹深度的混凝土试件,采用三点弯曲试验方法对含裂纹混凝土梁的断裂韧度进行实验,同时利用ABAQUS软件,采用最大主应力牵引损伤开裂准则与线性软化损伤模型进行数值模拟。结果表明,实验结果和数值模拟比较一致,最大误差不超过15%,当初始缝纹长度为40~120 mm时,起裂断裂韧度KiniIC变化幅度较小,失稳断裂韧度KunIC有明显的减小趋势。  相似文献   

12.
混凝土建筑物中的裂纹扩展追踪计算是确定结构安全度的重要手段。本文提出用虚拟裂纹单元及断裂力学准则(应变强度因子)追踪和模拟裂缝初始断裂、扩展并最终导致破坏的过程,给出一条逐段扩展的裂纹线,本方法计算结果与某些混凝土坝实测资料及模型试验结果吻合较好。  相似文献   

13.
Fully automatic finite element (FE) modelling of the fracture process in quasi-brittle materials such as concrete and rocks and ductile materials such as metals and alloys, is of great significance in assessing structural integrity and presents tremendous challenges to the engineering community. One challenge lies in the adoption of an objective and effective crack propagation criterion. This paper proposes a crack propagation criterion based on the principle of energy conservation and the cohesive zone model (CZM). The virtual crack extension technique is used to calculate the differential terms in the criterion. A fully-automatic discrete crack modelling methodology, integrating the developed criterion, the CZM to model the crack, a simple remeshing procedure to accommodate crack propagation, the J2 flow theory implemented within the incremental plasticity framework to model the ductile materials, and a local arc-length solver to the nonlinear equation system, is developed and implemented in an in-house program. Three examples, i.e., a plain concrete beam with a single shear crack, a reinforced concrete (RC) beam with multiple cracks and a compact-tension steel specimen, are simulated. Good agreement between numerical predictions and experimental data is found, which demonstrates the applicability of the criterion to both quasi-brittle and ductile materials.  相似文献   

14.
This paper presents a deterministic model to predict the pit evolving morphology and crack initiation life of corrosion fatigue. Based on the semi-ellipsoidal pit assumption, the thermodynamic potential including elastic energy, surface energy and electrochemical energy of the cyclically stressed solid with an evolving pit is established, from which specific parameters that control the pit evolution are introduced and their influence on the pit evolution are evaluated. The critical pit size for crack nucleation is obtained from stress intensity factor criterion and the crack nucleation life is evaluated by Faraday’s law. Meanwhile, this paper presents a numerical example to verify the proposed model and investigate the influence of cyclic load on the corrosion fatigue crack nucleation life. The corrosion pit appears approximately as a hemisphere in its early formation, and it gradually transits from semicircle to ellipsoid. The strain energy accelerates the morphology evolution of the pit, while the surface energy decelerates it. The higher the stress amplitude is, the smaller the critical pit size is and the shorter the crack initiation life is.  相似文献   

15.
为了研究沥青混凝土的疲劳特性,提出了基于双线性内聚力模型(CZM)的数值模拟方法.建立了疲劳损伤演化模型并将其与内聚力模型耦合,以反映沥青混凝土在循环荷栽作用下的软化行为.通过编制用户材料子程序。实现了疲劳损伤模型在有限元软件ABAQUS中的应用,并对劈裂疲劳试验进行了模拟.研究结果表明:模拟得到的疲劳寿命与实验室结果基本一致;疲劳损伤随加载次数的累积是非线性的,且损伤累积阶段是疲劳破坏的主要阶段;应力比增大时,损伤稳态发展阶段的寿命明显减小.可以发现提出的疲劳损伤数值模型是一种预估沥青混凝土疲劳损伤的有效方法.  相似文献   

16.
Ultra high toughness cementitious composite (UHTCC) usually shows strain hardening and multiple cracking under static tension loads. In practice, structures could be exposed to high strain rates during an earthquake. Whether UHTCC can maintain its unique properties and provide high structural performance under seismic loading rates largely determines whether it can successfully fulfil its intended function. To determine the rate dependence of UHTCC, uniaxial tensile tests with strain rates ranging from 4×10?6 s?1 to 1×10?1 s?1 were conducted with thin plates. The experimental results showed that UHTCC had significant strain hardening and excellent multiple cracking properties under all the rates tested. The ultimate tensile strain lay in the range of 3.7% to 4.1% and was almost immune to the change in strain rates. The rate of 1×10?3 s?1 seemed to be a threshold for dynamic increase effects of the first crack tensile strength, elastic modulus, ultimate tensile strength, and energy absorption capability. When the strain rate was higher than the threshold, the dynamic increase effects became more pronounced. The energy absorption capability was much higher than that of concrete, and the average ultimate crack widths were controlled below 0.1 mm under all rates. Several fitting formulas were obtained based on the experimental results.  相似文献   

17.
提出了一种利用非对称三点弯曲加载下的单边垂直切槽深梁试件(SEVNDB)开展岩石Ⅰ-Ⅱ复合断裂韧度测试方法。通过有限元法对试件的无量纲应力强度因子进行了数值分析与标定,研究了无量纲应力强度因子YⅠ、YⅡ及无量纲T应力T*与裂纹长度a、支座间距S1、S2之间的关系,定量刻画了实现纯Ⅱ型加载对应的裂纹长度a、支座间距(S1和S2)数值。研究结果表明,该方法在不改变试样裂缝倾角的前提下,通过调整裂缝长度a和支座间距S1、S2,即可方便地实现从纯Ⅰ型到纯Ⅱ型任意复合度载荷作用下的岩石断裂韧度测试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号