首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
误区1 换元法求函数解析式时忽略新变量范围的讨论 例1已知f(√x+1)=x+2√x,求函数f(x)的解析式. 错解:令t=√x+1,则√x=t-1,x=(t-1)2. 所以f(t)=(t-1)2+2(t-1)=t2-1, f(x)=x2-1. 辨析:因为f(√x+1)=x+2√x隐含着定义域是x≥0,所以由t=√x+1得t≥1,f(t)=t2-1的定义域为t≥1,解析式应为f(x)=x2-1(x≥1). 警示:换元法求出的为外层函数的解析式,它由对应法则和内层函数的值域构成,为此引入新变量要对内层函数求值域,这个值域就是所求函数(外层函数)的定义域.  相似文献   

2.
让我们看下面两个问题及其解答 :问题 1 :已知函数 y =f (2 x)的定义域为[1 ,2 },求函数 y =f (log2 x)的定义域 .[1]原解 :令 u =2 x,因为 y =f (2 x)的定义域为 [1 ,2 ],所以 1≤ x≤ 2 ,2≤ u≤ 4,所以函数 y =f (u)的定义域为 [2 ,4],由 2≤ log2 x≤ 4得 4≤ x≤ 1 6 ,故函数 y =f (log2 x)的定义域为 [4,1 6 ]问题 2 :已知 f (x + 1 ) =3 x + 1 ,求f (x)原解 :令 t=x + 1 ,则 t∈ [1 ,+∞ ) ,所以 x =(t-1 ) 2 ,所以 f (t) =3 (t-1 ) 2 + 1 =3 t2 -6 t+ 4 ,所以 f (x) =3 x2 -6 x + 4 ,x∈ [1 ,+∞ ) .对以上两个问题及其解答 ,相信大…  相似文献   

3.
<正>一、问题问题1:若函数y=f((1/2)9-x2)的定义域是[-3,3],则函数y=f(x)的定义域为.解:因为-3≤x≤3,所以0≤(1/2)9-x2≤3,故y=f(x)的定义域是[0,3].问题2:已知函数y=f(x2-1)的定义域是[-2,2],则函数y=f(x)的定义域为.解:因为-2≤x≤2,所以-1≤x2-1≤3,故y=f(x)的定义域是[-1,3].问题3:函数y=f(2x)的定义域是[-1,1],求y=f(log2x)的定义域.  相似文献   

4.
函数不仅是高中数学的核心,而且是学习高等数学的基础.函数的定义域则是研究函数的基础,是考核数学素质的主要阵地.【例1】函数f(2x-1)的定义域是[0,1],求f(1-3x)的定义域.解:f(2x-1)的定义域是[0,1],即0≤x≤1,于是-1≤2x-1≤1,所以函数f(t)的定义域是[-1,1]令-1≤1-3x≤1,得0≤x≤23即f(1-3x)的定义域是[0,23]点评:函数f(2x-1)的定义域是指x的取值范围,而非(2x-1)的值域【例2】求函数f(x)=2-x 3x 1的定义域.解:由2-x 3x 1≥0x-1x 1≥0x<-1或x≥1∴f(x)的定义域为(-∞,-1)∪[1, ∞)【例3】已知y=f(x)的定义域为[0,1],求y=f(lnx)的定义域.解…  相似文献   

5.
一、忽视复合函数中变量的范围致错例1已知函数f(x2-1)=lg(xx2-22),试判断f(x)的奇偶性.错解令t=x2-1,则x2=t+1.∴f(t)=lgtt-+11,即f(x)=lgxx-+11.∵f(-x)=lg--xx+-11=-lgxx-+11=-f(x),∴f(x)为奇函数.解析函数奇偶性是建立在定义域关于原点对称的前提条件下的,因此应首先求出原函数的定义域.若定义域不关于原点对称,则原函数为非奇非偶函数;若定义域关于原点对称,则再用奇偶性的定义判断.此题由xx2-22>0,即x2>2,∴t=x2-1>1,故得函数f(x)的定义域为{x|x>1},关于原点不对称,所以f(x)为非奇非偶函数.二、忽视函数的定义域致错例2判断函数y=…  相似文献   

6.
复合函数     
1.复合函数的定义若函数y=f(x)的定义域为U,而u=g(x)的定义域为X,值域为U’,并且U’(?)U,即函数u=g(x)的值域U’不超出函数f(u)的定义域U的范围.则对于X的每一个值x,经过中间变量u,相应地得到唯一确定的一个值y,于是y经过中间变量u而成为x的函数,记为y=f[g(x)]  相似文献   

7.
1配凑法例如,已知f(x 1)=x~2-3x 2,求f(x).因为f(x 1)=(x 1)~2-5(x 1) 6,所以f(x)=x~2-5x 6.2换元法例如,已知f(xx 1)=x2x 21 1x,求f(x).设xx 1=t,则x=t1-1,代入已知条件得f(t)=1 (t-1)2 (t-1)=t2-t 1,故f(x)=x2-x 1.3待定系数法例如,已知f[f(x)]=4x 3,求一次函数f(x).设一次函数f(x)=kx b,代入已知条件得f[f(x)]=f(kx b)=k(kx b) b=k2x bx b,比较系数得k=2,b=1或k=-2,b=-3所以f(x)=2x 1或f(x)=-2x-3.4方程组法例如,已知函数f(x)的定义域为{x|x≠0},满足f(x)-2f(1x)=x-1,求f(x).将原方程的x变量换成1x,则有f(1x)-2f(x)=1x-1,与原方程联立方…  相似文献   

8.
一、求函数解析式【例1】设y=f(x)为三次函数,且图象关于原点对称,当x=1时,f(x)取得极小值-2,求f(x)的解析式.解:设f(x)=ax3 bx2 cx d(a≠0),由于其关于原点对称,为奇函数.故b=d=0.所以f(x)=ax3 cx,由f′(x)=3ax2 c,且x=1时,f(x)有极小值-2得f′(1)=3a c=0,f(1)=a c=-2,解之,得a=1,c=-3,所以f(x)=x3-3x.二、求函数单调区间与判断函数单调性【例2】求f(x)=x3 3x的单调区间.分析:首先确定f(x)的定义域,再在定义域上根据导函数f′(x)的符号来确定f(x)的单调区间.解:f(x)的定义域为(-∞,0)∪(0, ∞)f′(x)=3x2-3x2=3(x2 1)(x 1)(x-1)x2由于当x<-…  相似文献   

9.
函数解析式是研究函数性质的基础 ,求函数的解析式是函数问题中较难掌握的一类问题 ,下面结合实例谈谈求函数解析式的 1 0种常用方法 .1 配凑法已知f[g(x) ]的解析式 ,求f(x)的解析式 ,常用配凑法 .例 1 已知f(x 1x) =x2 1x2 -x -1x 1 ,求f(x) .解 因为f(x 1x) =(x 1x) 2 - (x 1x) - 1 ,所以f(x) =x2 -x - 1 .评注 配凑法的关键就是通过观察 ,把f[g(x) ]的解析式凑成关于g(x)的形式 .2 换元法已知f[g(x) ]=h(x) ,且g(x)存在反函数 ,求f(x)的解析式 ,常用换元法 .例 2 已知f(x 1x ) =x2 1x2 1x,求f(x) .解 设x 1x =t,则x =1t…  相似文献   

10.
函数是中学教学中的重点内容之一 .由于函数的值域在教材中阐述其求法甚微 ,因而有不少的同学在求函数的值域时 ,无从着手 .为了帮助同学们在求值域时有一套较系统的方法 ,在这里归纳几种常用方法 ,供读者参考 .1 反函数法如函数 y =f (x)有反函数 ,则 y =f -1 (x)的定义域也就是 y =f (x)的值域 .例 1 求 y =f (x) =2 x2 x + 1的值域 .解 :原函数的反函数为y =f -1 (x) =log2x1-x.其定义域由 x1-x>0来确定 ,所以 0 相似文献   

11.
一、求简单复合函数单调区间定理:设函数u=g(x)的值域为N.1.若函数y=f(u)在N上为增函数,则u=g(x)的单调增(减)区间就是函数y=f[g(x)]的单调增(减)区间.2.若函数y=f(u)在N上为减函数,则u=g(x)的单调增(减)区间就是y=f[g(x)]的单调减(增)区间.本文根据上述定理归纳出一个比较容易的求复合函数单调区间的一般方法,其步骤是:(1)在y=f[g(z)](复合函数)中,换元即令u=g(x)(中间函数),则y=f(u)(原函数);(2)求出y=f(u)的单调区间N_i(i=1,2,…,n)并判定出增减;(3)求出使u=g(x)∈N_i的x范围M:(4)求  相似文献   

12.
有关函数解析式问题是历年来高考的热点和重点,本文就求解函数解析式的几种常用方法穴如换元法、配方法、替代法、待定系数法雪进行归纳,供同仁参考。例1:已知f穴x 1)=x2-2x-15,求f穴x雪。分析:求函数解析式y=f穴x雪的实质是求对应法则f:x→y,关键要弄清对于“x”而言,“f”是怎样的对应法则。解法一(换元法):令x 1=t,则x=t-1代入原函数式得f(t)=(t-1)2-2(t-1)-15=t2-4t-12∴f(x)=x2-4x-12说明:f穴t雪、f穴x雪都是同一个法则f,只是对不同的变量去实施,若此题改为求f穴2x雪,可先求f穴x雪。解法二穴配方法雪:∵f(x 1)=(x 1)2-4x-16=(x 1)2-4(x…  相似文献   

13.
一、分段函数的反函数分段函数的反函数一定也是分段函数,具体求时,一般是把每一段当作单个函数来求,最后写成分段函数的形式.在这个过程中要注意函数的定义域、值域与其反函数的值域、定义域的对应关系.例1设函数f(x)=-log3(x 1),x∈(6, ∞),3x-6,x∈(-∞,6]的反函数为f-1(x),若f-119=a,则f(a 4)=.解当x>6时f(x)<0,x≤6时f(x)>0.又f-119=a,∴f(a)=91,∴3a-6=91,解得a=4,∴f(a 4)=f(8)=-log3(8 1)=-2.例2求函数f(x)=x2-1,x∈[0,1),239-x2,x∈[-3,0)的反函数.解由y=x2-1(0≤x<1),解得x=1 y(-1≤y<0).又由y=239-x2(-3≤x<0)得x=-9-49y2(0≤y<2…  相似文献   

14.
函数不仅是高中数学的核心,而且是学习高等数学的基础.函数的定义域则是研究函数的基础,是考核数学素质的主要阵地.例1函数f(2x-1)的定义域是[0,1],求f(1-3x)的定义域.解:f(2x-1)的定义域是[0,1],即0≤x≤1.于是-1≤2x-1≤1,所以函数f(t)的定义域是[-1,1].令-1≤1-3x≤1,得0≤x≤23.即f(1-3x)的定义域是[0,23].点评:函数f(2x-1)的定义域是指x的取值范围,而非(2x-1)的值域.例2(2004年上海高考题)记函数f(x)=2-x 3x 1的定义域为A,g(x)=lg[(x-a-1)(2a-x)],(a<1)的定义域为B.(Ⅰ)求A;(Ⅱ)若B A,求实数a的取值范围.解:(Ⅰ)由2-x 3x 1≥0 x-1x 1…  相似文献   

15.
求解函数值域或与函数单调区间有关问题时要特别注意函数的定义域例1已知f(习=3二一“(2蕊、簇4),F(:卜旷‘(x)12+f-,(x’)则的值域为( A.[2,5」B.[1,+co)C.【2,10〕D一〔6,13」分析:要注意x,尸均应满足广‘伽)的定义域.解:由f(,)=3一2(2蕊x蕊4),求得f,(:)二109犷+2(x。[l,91),则F(x)=旷’(,)〕“+f-,(x,)=109孙+610脚+6二(l卿+3)’一3··:尸(*)的定义域为〔l,9],F(劝的定义域应满足l岌%簇9,1蕊护续9.解得1城x蕊3 o蕊log3x簇l,…6簇F(x)宾13.选D.李;利用换元法时栗特别注意新元的取值范围例2设a>0,求f(劣卜2a( 51…  相似文献   

16.
正摘要解方程f(x)=0时,令方程中关于x的某部分f1(x),f2(x),…,f n(x)分别为u1,u 2,…,u n,我们把这种换元法称之为分部换元法.用此法解某些根指数较大而又不易直接化去根号的无理方程,to通常较为简便.常见的有以下两种类型.  相似文献   

17.
在解含有绝对值的不等式时,通常我们去掉绝对值再求解,但在有一些问题中,添加绝对值也会取得求解的途径。下面给出两个例题加以说明。例1 求函数y=sinx+Z/sinx的值域。分析:在定义域x≠kπ(k∈Z)内,用“均值不等式”或用“函数的有界性”求此函数y的值域,均难奏效;若用“换元法”令t=sinx,则y=f(x)=t+Z/t,t∈E[-1,0)∪(0,1],转化由函数y=f(t)的单调性求值域,计算过程冗长;但由y=(sin~2x+2)/sinx两边添上绝对值,则可用“均值不等式”简明解出。解:由y=(sin~2x+2)/sinx得  相似文献   

18.
抽象函数是相对于具体函数而言的,指没有给出具体函数的解析式,仅仅依据给定的性质来解决相关问题的一类函数,在多次考试中,常出现以抽象函数为背景的考题,因此我们在学习中应引起重视。一、抽象函数的定义域求函数的定义域是求单个变量x的取值集合。例1:①已知f(x)的定义域为[0,1],求f(x 1)的定义域。解:∵0≤x 1≤1∴-1≤x≤0即f(x 1)的定义域为[-1,0]。②已知f(x2)的定义域为[-1,2],求f(x)的定义域。解:∵-1≤x≤2∴0≤x2≤4,即f(x)的定义域为[0,4]。一般地,若f(x)的定义域为D,则f[g(x)]的定义域是{x?g(x)∈D},即求g(x)的值域为D时,对…  相似文献   

19.
1待定系数法例1若f(x)=x2-mx+n,f(n)=m,f(1)=2,求f(x).解依题意:2,12,n mn n mm n-----++==解得m=-2,n=-1,∴()f x=x2+2x-1.注如果已知函数式的构造模式,通常根据题设用此法求出函数式的待定系数.2换元法例2已知f(x+1)=x+1,求f(x).解令x+1=t,则x=(t-1)2(t≥1),∵f(t)=(t-1)2+1(t≥1),即f(x)=t2-2t+2(x≥1).注如果已知复合函数f(g(x))的表达式,求f(x)的解析式;先令g(x)=t,得f(x),但值得注意的是在进行变量替换时,应求出新变量的取值范围,否则容易出现错误.3代入法例3设()1f x=1-x,求f(f(f(x)))的解析式.解∵(())11f f x=1-f(x)=1-1/(1-x)1x x…  相似文献   

20.
文[1]列出了以下几种认为是有关函数定义域的错题. 题1 已知函数y=f(x)的定义域为[-3,√2],则y=f(√x-2)的定义域为____. 题2 已知函数y=f(lnx)的定义域为(0,1],则y=f(x)的定义域为____. 题3 已知函数y=f(2x)的定义域为[[1,2],则y=f(log2x)的定义域为____. 为了说明上述三题是错误题型,还举了反例1和反例2,也抄写于下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号