首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

2.
我们知道,一个二元一次不定方程在一般情况下,其解有无数多组,然而有些二元方程,只要我们充分注意挖掘方程自身的隐含条件,或题中给出的附加条件,抓住未知数的特殊性,是能求得其定解的。本文列举初中数学竞赛题予以说明。例1 已知x,y为实数,且x~2+2x+2y-6y+10=0,则log_2(y-x)·log_2(y+x)=__(86,无锡)。解:原方程化为(x+1)~2+(y-3)~2=0,利用非负数的性质,可得x=-1,y=3。∴log_2(y-x)·log_2(y+x)=log_24  相似文献   

3.
一、构造一元二次方程法例1 已知x为实数,求函数y=3x2+x+2/x2+2x+1的最小值. 解:将原函数解析式变为关于x的二次方程: (y一3)x2+(2y-1)x+(y-2)=0. 因为x是实数,所以△≥0. 即(2y-1)2-4(y-3)(y-2)≥0. 解得y≥23/16.  相似文献   

4.
1981年12期数学通报《几种类型的不等式证明》一文中(二): 已知条件为线性方程形式的不等式证明(即条件x+y+z+…A,A为常数)。 4:若x+y+z=1,试证x~2+y~2+z~2≥1/3证明:令x=1/3-t,y=1/3-2t,z=1/3+3t(t为实数)。 x~2+y~2+z~2=[(1/3)-t]~2+[(1/3)-2t]~2+[(1/3)-3t]~2 =1/9-(2/3)t+t~2+1/9-(4/3)t+4t~2+1/9+2t+9t~2 =1/3+14t~2≥1/3 (∵t为实数)。 当t=0时,即x=y=z=1/3时,上式等号成立。  相似文献   

5.
一些求参数取值范围的问题可以转化为求最值的问题例1 当a取何实数时,方程2acos~2x-sinx+2+a=0有实数解? 解:由原方程解出a=(sinx+2)/(2cos~2x+1)=(sinx-2)/(3-2sin~2x)∴1/a=(2sin~3x-3)/(2-sinx)=-2sinx-4+5/(2-sinx) 设t=2-sinx∈[1,3]。化1/a=2t+5/t-8=(2t~(1/2)-(5/t)~(1/2)+2(10)~(1/2)-8 故在(2t)~(1/2)=(5/t)~(1/2)即t=5~(1/2)/2~(1/2)=2-sinx 即sinx=4-(10)~(1/2)/2(∈[-1,1])时1/a取最小值2(10)~(1/2)-8  相似文献   

6.
换元法是解题的一种重要方法,平均值换元法又是一种特殊的、巧妙的方法。有些类似问题若能灵活地利用这种方法,则步骤极为简捷。举例如下:一、在解方程方面例1 在实数范围内,解方程(x+1)~4+(x+3)~4=272。分析若直接把左边括号展开,此方程可整理为 x 的四次方程,不好解。若考虑到x+1与 x+3的平均值为 x+2,令 y=x+2,则 x+1=y-1,x+3=y+1,这时原方程化为(y-1)~4+(y+1)~4=272,展开后求解,较为简便。  相似文献   

7.
已知圆锥曲线的切线方程,求相应切点坐标,一般是要解一个二元二次方程组。其实,可直接将切线方程按“切点式”进行“分离变换”而求得,以下举例说明之。例1 直线5~(1/2)x+6~(1/2)y-3=0是双曲线x~2-y~2=1一切线,求出相应的切点坐标。解:因为双曲线x~2/3-y~2=1的“切点式”切线方程为:x_0x/3-y_0y=1,(*),现把5~(1/2)x=6~(1/2)y-3=0化成(*)的形式:5~(1/2)x/2-(-6~(1/2)/3)y=1,对照(*)可知切点坐标为(5~(1/2),-6~(1/2)/2)。  相似文献   

8.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

9.
一、解方程: (6x+7)~2(3x+4)(x+1)=6解、令(6x+7)~2=y 因(3x+4)(x+1)=1/12(6x+8)(6x+6)=1/12[(6x+7)~2-1] 原方程化成1/12y(y-1)=6 即y~2-y-72=0,解得y=9,及y=-8  相似文献   

10.
题方程(2(x+1)~(1/5)+1-1)~4+(2(x+1)~(1/5)-3)~4=16所有实数根的和是( )(A)(121)/(16) (B)0 (C)-(45)/8 (D)(45)/8(1996年荆沙市初中数学竞赛题) 解法一此方程中的2(x+1)~(1/5)-1与2(x+1)~(1/5)-3相差2,  相似文献   

11.
初中《代数》第三册P.115例5是:已知方程x~2-2x-1=0,利用根与系数关系求一个一元二次方程,使它的根是原方程的各根的立方。其实,本题若不利用根与系数的关系,也可获解,请看: 解:设y为新方程任一根,则对原方程相应的根x有:y=x~3。由原方程得:X~2=2x+1,所以x~3=2x~2+x=2(2x-1)+x=5x+2。因此,y=5x+2,即x=(y-2)/5,将它代入原方程并化简即得所求方程:y~2-14y-1=0。  相似文献   

12.
1.用换元法解方程时,设x/x-1=y,则原方程化为关于y的方程是( ) (A)y2+5y+6=0. (B)y2-5y+6=0. (C)y2+5y-6=0. (D)y2-5y-6=0. 2.不解方程,判别方程5x2-7x+5=0的根的情况是( ) (A)有两个相等的实数根. (B)有两个不相等的实数根. (C)只有一个实数根. (D)没有实数根. 3.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为( )  相似文献   

13.
1.用倒数换元例1 解方程x2-x-12/x2-x-4=0. (2001年哈尔滨中考) 解设x2-x=y,则12/x2-x=12/y,于是原方程化为 y-12/y-4=0,变形得 y2-4y-12=0,解得 y1=6,y2=-2, 当y1=6,即x2-x-6=0时,解得 x1=3,x2=-2; 当y2=-2时,即x2-x+2=0时,△<0,此方程无实数根.  相似文献   

14.
第一试 1.已知b、c为方程x~2 bx c=0的两个根,且c≠0.则(b,c)=____。 2.实数x、y、z满足 x=6-3y, x 3y-2xy 2z~2=0.  相似文献   

15.
变量代换法通过式与式的相互转化,常能达到化难为易、化繁为简的目的。但在解题时极易发生下面错误,现分别举例分析如下。一、忽视原变量可取值范围,造成错误例1.若x+y+z=1,试证:x~2+y~2+z~2≥(1/3)。错解设x=(1/3)-t,y=(1/3)-2t,z=(1/3)+3t(t∈R) ∴ x~2+y~2+z~2=((1/3)-t)~2+((1/3)-2t)~2+((1/3)+3t)~2=(1/3)+14t~2≥(1/3) 当t=0,即x=y=z=1/3时,上式等号成立。剖析粗看,还以为是一个好方法,可细看,能发现其中代换x=(1/3)-t,y=(1/3)-2t,z=(1/3)+3t有欠妥当,因为x=1/ ,y=2/ ,z=4/ 显然适合已知条件x+  相似文献   

16.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

17.
一、化简、求值例1化简26√2√+3√+5√.解:原式=2·2√·3√2√+3√+5√=(2√+3√)2-(5√)22√+3√+5√=(2√+3√+5√)(2√+3√-5√)2√+3√+5√=2√+3√-5√.例2若x4+1x4=2,求x+1x的值.解:由x4+1x4=2,配方,得(x2+1x2)2=4,所以x2+1x2=2.再配方,得(x+1x)2=4,所以x+1x=±2.二、分解因式例3分解因式x4+4.解:原式=x4+4x2+4-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).□郭安才三、解方程(组)例4解方程2x2+3y2-4xy-6y+9=0.解:原方程可变形为2(x-y)2+(y-3)2=0,∵2(x-y)2≥0,(y-3)2≥0,∴只有x-y=0,y-3=0时,原方程成立.解得x=3,y=3.故原方程的解是x=3,…  相似文献   

18.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

19.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

20.
一、填空题(本题10小题,前5小题每题6分,后5小题每题8分;共70分) 1.实数x使x-1/x=5~(1/2),则x+1/x=____。 2.若a、b是二次方程x~2-x+g=0的两个根,则a~3+b~3+3(a~3b+ab~3)+6(a~3b~2+a~2b~3)的值是____。 3.设m为实数,方程x~2-5x+m=0有一个根的相反数是方程x~2+mx+5=0的一个根,则m=____。 4.用[a]表示不超过实数a的最大整数,{a}=a-[a]表示a的小数部分,则方程[x~3]+[x~2]+[x]={x}-1的解是____。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号