首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

2.
错在哪里     
1.湖北咸丰李永贵来稿题:过点B(0,-b)作椭圆x~2/a~2 y~2/b~2=1(a>b>0)的弦;求这些弦的最大值。解设M(x_0,y_0)为椭圆上任一点,由两点间的距离公式可得 |BM|~2=(x_0~2-0)~2 (y_0 b)~2=x_0~2 y_0~2 2by_0 b~2, ①因点M(x_0,y_0)在椭圆上,∴x_0~2=(a~2b~2-a~2y_0~2)/b~2,代入  相似文献   

3.
学过《平面解析几何》的同学都知道:过椭圆x~2/a~2+y~2/b~2=1上一点P(x_0,y_0)的切线的方程是(x_0x)/a~2+(y_0y)/b~2=1①因(x_0~2)/a~2+(y_0~2)/b~2=1,又可写成(x_0x)/a~2+(y_0y)/b~2=(x_0~2)/a~2=(y_0~2)/b~2②, 一些细心的同学会问:当P(x_0,y_0)点不在椭圆上时,方程①或②的几何意义是什么呢?过椭圆外定点的椭圆的切线能否用方程①或②来表示呢?而少数粗心的同学在解题时没考虑点P的位置,直接套用方程①或②导致错误的情况时有发生。因此,有必要引导学生利用熟知的原理和方法,进行一番较深入的探讨。下面我们给出:  相似文献   

4.
设A(x_1,y_1),B(x_2,y_2)两点在椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)上,M(x_0,y_0)是AB的中点,则有(?)由③-④得  相似文献   

5.
文[2]作为文[1]的续文,在直线方程(x_0x)/(a~2) (y_0y)/b~2=1的三种几何意义探讨启发下,给出了直线方程(x_0x)/(a~2)-(y_0y)/(b~2)=1的几何意义.本文再给出直线方程y_0y=p(x x_0)的几何意义,以告对此类问题的探讨圆满解决.  相似文献   

6.
定义:连结椭圆上任意两点的线段叫弦.过椭圆中心的弦叫直径.类似地可定义双曲线的直径.如图1,平行于直径CD的弦的中点的轨迹AB和直径CD叫互为共轭直径.类似地可定义双曲线的共轭直径. 定理1 已知AB、CD为椭圆x~2/a~2 y~2/b~2=1的一对共轭直径,其斜率分别为k_(AB)、K_(CD),那么K_(AB)·K_(CD)=-b~2/a~2. 略证:如图1,设平行弦EF簇的斜率为k(即K_(CD)),则平行弦EF簇的方程为 y=kx t(t为参数).① 又椭圆方程为 x~2/a~2 y~2/b~2=1. ② ①代入②整理得 (a~2k~2 b~2)x~2 2a~2tkx a~2(t~2-b~2)=0. ③ 由韦达定理,得x_1 x_2=-(2a~2tk/a~2k~2 b~2). 设M(x′,y′)是EF的中点,则 x′=1/2(x_1 x_2)=-(a~2tk/a~2k~2 b~2) ④ 点M在EF上,则y′=kx′ t. ⑤ 由④、⑤消去参数t得 y′=-b~2/a~2k x′. ∵k_(AB)=k_(OM)=-(b~2/a~2k). ∴k_(AB)·k_(CD)=-(b~2/a~2k)·k=-(b~2/a~2). 推论1 AB是椭圆x~2/a~2 y~2/b~2=1的任意一条弦,P为AB的中点,O为椭圆的中心,则 K_(AB)·K_(OP)=-(b~2/a~2).  相似文献   

7.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

8.
<正>已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)/(a2)/(a2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)的  相似文献   

9.
我们知道,过定点P_0(x_0,y_0)的直线l的参数方程的一般形式为: x=x_0+at,y=y_0+bt。(t为参数,a~2+b~2≠0) (1) 这时,如a~2+b~2≠1,则参数t没有明显的几何意义。通过“标准化”,即得到标准形式:  相似文献   

10.
文[1]定义了椭圆的切准点:椭圆(x~2)/(a~2)+(y~2)/(b~2)=1(a>b>0)上点M(x_0,y_0)(除长轴两顶点)处的切线l交右准线l_2:x=(a~2)/c于P,交左准线l_1:x=-(a~2)/c于Q,则点P,Q为椭圆的切准点.笔者  相似文献   

11.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

12.
轨迹问题设PQ是椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)的弦,且PQ与x轴垂直,A_1,A_2是椭圆的左右顶点,求直线PA_1和QA_2交点的轨迹.解:由题意不妨设P(x_0,y_0),Q(x_0,-y_0),又知A_1(-a,0),A_2(a,0),故得直  相似文献   

13.
命题一则     
在平面直角坐标系中,椭圆的标准方程是x~2/a~2+y~2/b~2=1 (1)一般方程则为φ(x,y)(?)Ax~2+BXy+Cy~2+DX+Ey+F=0 , (2)其中判别式B~2-4ACO.命题 若P(x_1,y_1)是椭圆(1)的外点,则x_1~2/a~2+y_1~2/b~2>1;若P(x_1,y_1)是椭圆(1)的内点,则x_1~2/a~2+y_1~2/b~2<1,一般地,若P(m,n)是椭圆(2)的外点则φ(m,n)>0若P(m,n)是椭圆(2)的内点则φ(m,n)相似文献   

14.
高中《代数》(下册)第15页习题十五第6题为:“已知 ad≠bc,求证(ac bd)~2<(a~2 b~2)(C~2 d~2)”(柯西不等式)一般地,易证下列不等式成立:(a~2一b~2)(x~2-y~2)≤(ax十by)~2≤(a~2 b~2)(x~2 y~2)(其中a,b,x,y∈R)当且仅当bx=-ay时,左边取等号;当且仅当bx=ay时,右边取等号.本文拟介绍该不等式在解几中的一些应用,供参考.设直线l‘:Ax By=0,椭圆(X~2)/(a~2) (y~2)/(b~2)=1及椭圆上一点P_0(x_0,y_0).则(Ax_0 By_0)~2=  相似文献   

15.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

16.
求圆锥曲线弦的中点轨迹方程,在教科书和参考书中,都是用消去参数的方法来求出其轨迹方程的。这种方法计算冗长,容易搞错。用斜率公式求弦的中点轨迹方程,只要稍加计算,就能求出其轨迹方程,学生很容易掌握。用斜率公式还能解决一些有关弦的中点的其他问题。为了叙述方便,先介绍圆锥曲线弦的斜率和弦的中点坐标间的关系。如图1所示,AB是椭圆x~2/a~2 y~2/b~2=1的弦,而M是弦AB的中点。设A、B的坐标分别为(x_1,y_1),(x_2,y_2),弦AB的中点M的坐标为(x,y),  相似文献   

17.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

18.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

19.
常看到一些写给中学生的书和数学杂志上介绍直线的参数方程时称经进点P_0(x_0,y_0),倾角为α的直线的参数方程的标准式是:x=x_o tcosα y=y_o tsinα(t是参数),又将这样的形式x=x_o at y=y_o bt(t是参数,a~2 b~2≠1)叫做一般形式.并介绍将一般形式化为标准形式的方法只须在t的系数上除以(a~2 b~2)~(1/2)构成t的系数的平方和为1.即: (t为参数) (※) 为了叙述方便,我们姑且承认其“一般式”和“标准式”的称呼法. 显然,作者称(※)为标准式是认为该方程中参数t的几何意义是直线上P点和P_0(x_0,y_0)点的有向线段的数量.但我认为方程(※)还不一定是直线参数方程的标准式,其原因如下:  相似文献   

20.
从点P作二次曲线C的两条切线,切点分别是A、B,称线段AB为点P对C的切点弦。本文在建立切点弦(所在直线)方程的基础上,研究有关切点弦的一些性质。一、切点弦方程例1.求椭圆x~2/a~2+y~2/b~2=1外一点P(x_0,y_0)对椭圆的切点弦AB的方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号