首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study. A pilot scale trickling filter filled with gravel was used as the experimental biofilter. Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand (COD) and nutrients from synthetic brewery wastewater. Performance evaluation data of the trickling filter were generated under different experimental conditions. The trickling filter had an average efficiency of (86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2·d). Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3·d). An average COD removal efficiency of (85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2·d). The results lead to a design organic load of 1.5 kg COD/(m3·d) to reach an effluent COD in the range of 50–120 mg/L. As can be concluded from the results of this study, organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter.  相似文献   

2.
A laboratory-scale trickling biofilter column,filled with Raschig rings and inoculated with Pseudomonas putida (ATCC 1785)was used to purify chlorobenzene contained waste gases.Sodium dodecyl sulfonate(SDS)was used to enhance the performance of trickling biofllter.Purification performance of the trickling biofilter was examined for chlorobenzene inlet concentration of 1.20~5.04 g/m~3 at different EBRTs between 76~153 s.Without SDS addition,with simultaneous increase in chlorobenzene inlet loading rate and gas flow rate,100% removal efficiency was achieved at EBRT of 109 s and inlet loadings below 5120 mg/m~3.Addition of SDS to nutrient solution led to improvement of trickling biofilter purification performance. By introducing 25 mg/L SDS,the removal efficiency was increased by 21% and elimination capacity up to 234 g/(m~3.h)was achieved at chlorobenzene inlet loading of 241 g/(m~3.h).Although SDS concentration experienced a low rate reduction after continuous nutrient solution recirculation,this result has little influence on trickling biofilter's removal efficiency in monitoring period.  相似文献   

3.
In the industrial operation of biotrickling filters for hydrogen sulfide (H2S) removal, shock loads or starvation was common due to process variations or equipment malfunctions. In this study, effects of starvation and shock loads on the performance of biotrickling filters for H2S removal were investigated. Four experiments were conducted to evaluate the changes of biomass and viable bacteria numbers in the biotrickling filters during a 24-d starvation. Compared to biomass, viable bacteria numbers decreased significantly during the starvation, especially when airflow was maintained in the absence of spray liquid. During the subsequent re-acclimation, all the bioreactors could resume high removal efficiencies within 4 d regardless of the previous starvation conditions. The results show that the re-acclimation time, in the case of biotrickling filters for H2S removal, is mainly controlled by viable H2S oxidizing bacteria numbers. On the other hand, the biotrickling filters can protect against shock loads in inlet fluctuating H2S concentration after resuming normal operation. When the biotrickling filters were supplied with H2S at an input of lower than 1700 mg/m3, their removal efficiencies were nearly 98% regardless of previous H2S input. Project supported by the Foundation for Society Development of Jilin Province (No. 20080412-1), the Education Research Foundation for Science and Technology Development of Jilin Province, and the Foundation for Doctor Research in Northeast Dianli University of Jilin Province (No. BSJXM-200710), China  相似文献   

4.
A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bio-trickling filter had proven excellent performance over substantial operational periods. Removal efficiency of H2S was nearly 100% when volumetric loading of the bio-trickling filter varied from 0.64 g/(m3·h) to 38.20 g/(m3·h) and metabolism products of H2S were mainly composed of SO42–. When inlet concentration of H2S was 250 mg/m3, the optimum gas retention time was 30 s and the optimum spray water flow rate was 0.005 9~0.012 L/(cm2·h). The bio-trickling filter had good ability to resist shock of high volumetric loading, and was not blocked during experiments for nearly four months during which resistance was maintained at relatively lower value, so that the bio-trickling filter need not carry out back washing frequently and can be operated steadily for long-term.  相似文献   

5.
题目:改良型多介质土壤渗滤系统对甲鱼养殖废水的净化效果研究
  目的:通过向多介质土壤渗滤系统(MSL)的土壤层添加污泥,研究改进后的系统对工厂化甲鱼养殖废水的处理效果,分析系统内微生物群落的变化,以期部分揭示其可能的作用机理。
  创新点:工厂化甲鱼养殖废水排放量日益增大,且水体氨氮含量较高。目前市场上缺乏针对甲鱼养殖废水的处理技术,MSL系统对该废水的处理也未有报道。本文在 MSL 系统的基础上进行改良,并将其应用于甲鱼养殖废水处理上,提出一套有效的甲鱼养殖废水处理技术,并对 MSL 系统内微生物群落结构进行了分析。
  方法:向4套MSL小试装置中分别添加0%、5%、10%和20%污泥,研究其对工厂化甲鱼养殖废水的净化效果。试验中水质指标测定均按国家标准方法进行,系统内微生物群落结构采用聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE)法测定。
  结论:MSL系统可有效地处理工厂化甲鱼养殖废水,向系统中添加20%污泥后处理效果更佳。添加20%污泥的系统内具有较高的硝化类细菌多样性和都较多的生物量。  相似文献   

6.
HCl in coal-fired flue gas has adverse impact on the environment, equipment, and the flue gas desulfurization (FGD) system. The existence of HCl also increases the difficulty of the treatment of desulfurization waste water. Semi-dry dechlorination technology is put forward to attach chlorine to fly ash by spraying in alkaline solution. Simultaneously, desulphurization waste water is used as the solvent of alkali, and this could help realize the target of near-zero emission of desulfurization waste water. CHEMKIN is used to build a chemical kinetics model, which is based on the measured components of flue gas in a coal-fired power plant. NaOH is set as the alkali absorbent in the model. Both the competitive relationship of SO2 and HCl and the effects of different factors on HCl reaction efficiency are analyzed. SO2 with high concentration would compete for more NaOH, but when Na/Cl (ratio in mole) is 1, the reaction efficiency of HCl achieves 22.28%, and it is positively correlated with Na/Cl. When Na/Cl surpasses 5, the reaction efficiency of HCl increases to beyond 70%. As Na/Cl continues to increase, there is a slower growth of HCl reaction efficiency and it finally achieves 100% when Na/Cl reaches 12. With a fixed value of Na/Cl, a change of 1000 mg/m3 in SO2 concentration would change the reaction efficiency of HCl about 13%. The effect of flue temperature on HCl reaction efficiency is not significant. Acid gases in flue gas react with NaOH completely in 0.1 s and come to equilibrium after about 1 s.  相似文献   

7.
研究目的:在"干清粪"系统猪粪堆肥过程中,不同添加剂(玉米秸秆、锯末和蘑菇渣)处理对甲烷、氧化亚氮和氨气排放的影响。创新要点:将不同的添加剂(玉米秸秆、锯末和蘑菇渣)应用到快速堆肥系统中进行堆肥,测定了猪粪堆肥过程中甲烷、氧化亚氮和氨气的排放规律,为国内猪粪堆肥的应用提供理论指导。重要结论:玉米秸秆作为添加剂能增加猪粪堆肥过程中氧化亚氮的排放;蘑菇渣添加剂增加了堆肥过程中甲烷的排放,然而减少了氧化亚氮及氨气的排放;锯末处理能增加堆肥过程中氨气的排放。添加剂能显著影响堆肥过程中氮素的损失。  相似文献   

8.
The feasibility and performance of nitrogen removal from municipal sewage were investigated through the completely autotrophic nitrogen removal over nitrite (CANON) process in a continuous reactor. CANON process was successfully started up with the transformation of nitrogen into gas by mass-balance analysis. For the synthetic waste-water (up to 480 mg NH4+-N/(L·d)), removal rates of the ammonia nitrogen and total nitrogen (TN) were about 80% and 55%, respectively, at 1.25 h hydraulic retention time (HRT). For the secondary effluent of municipal sewage, the effluent concentrations of NH4+-N and TN were below 5 mg/L and 9 mg/L, respectively. It is in accordance with the water quality standard for scenic environment with the reuse of urban recycling water (GB/T 18921-2002).  相似文献   

9.
The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respectively. The volumetrical volumetric loading rates (LRs) observed through decreasing hydraulic retention time (HRT) at fixed substrate concentration are higher than those by increasing substrate concentration at fixed HRT. The sulfide oxidation in ASO reactor was partially producing both sulfate and sulfur; but the amount of sulfate produced was approximately one third that of sulfur. The process was able to tolerate high sulfide concentration, as the sulfide removal percentage always remained near 99% when influent concentration was up to 580 mg/L. It tolerated relatively lower nitrate concentration because the removal percentage dropped to 85% when influent con- centration was increased above 110 mg/L. The process can tolerate shorter HRT but careful operation is needed. Nitrate conversion was more sensitive to HRT than sulfide conversion since the process performance deteriorated abruptly when HRT was decreased from 3.12 h to 2.88 h. In order to avoid nitrite accumulation in the reactor, the influent sulfide and nitrate concentrations should be kept at 280 mg/L and 67.5 mg/L respectively. Present biotechnology is useful for removing sulfides from sewers and crude oil.  相似文献   

10.
制药厂为净化废水生化降解过程中产生的高浓度恶臭气体,建立了“吸收+吸附”的二级处理工艺的成套处理装置.设计进气量为22 000 m^3/h,当H2S进气质量浓度为600~1 200 mg/m^3时,H2S去除率保持在90%以上;醛类等有机气体的平均去除率为94%.经进一步分析核算知,处理1 000 m^3废气投资费用为10.52万元,H2S处理费用为3.14元/kg.  相似文献   

11.
Cucumber and rice plants with varying ammonium (NH4 +) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO3 )-grown plants, cucumber plants grown under NH4 +-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO2) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O2-independent alternative electron flux, and increased O2-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH4 +-grown plants had a higher O2-independent alternative electron flux than NO3 -grown plants. NO3 reduction activity was rarely detected in leaves of NH4 +-grown cucumber plants, but was high in NH4 +-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3 assimilation, an effect more significant in NO3 -grown plants than in NH4 +-grown plants. Meanwhile, NH4 +-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO3 reduction, regardless of the N form supplied, while NH4 +-sensitive plants had a high water-water cycle activity when NH4 + was supplied as the sole N source.  相似文献   

12.
In this study, methanethiol(MT)-degradation bacteria were cultivated by using MT, methanol and trimethylamine as carbon sources under anaerobic conditions. It was found that the batch bacteria used MT and methanol as carbon sources grew faster than those used trimethylamine. The enriched bacteria used MT and methanol as the carbon sources were respectively inoculated in different biotrickling filters. The biological conversion performance of MT under anaerobic conditions was investigated in biotrickling filters. The results showed that the performance of the biotrickling filter inoculated with the bacteria enriched using MT was better than that inoculated with the bacteria enriched using methanol. When the inlet concentration of MT was 0.005vol%(50,ppm), the empty bed residence time was 50 s, p H value was 8.0, and the flow rate of the nutrient solution was 10 L/h, the removal efficiency of MT reached 95.3%. Adding methanol stimulated the growth of the biomass and the degradation of MT, but caused that some bacteria only degrading methanol outcompeted the bacteria only degrading MT. The concentration of sodium bicarbonate in the nutrient solution needed to be controlled lower than 30 g/L, otherwise, it would be harmful to the degradation of MT.  相似文献   

13.

Objectives

To investigate the effects of different nitrate sources on the uptake, transport, and distribution of molybdenum (Mo) between two oilseed rape (Brassica napus L.) cultivars, L0917 and ZS11.

Methods

A hydroponic culture experiment was conducted with four nitrate/ammonium (NO3 ?:NH4 +) ratios (14:1, 9:6, 7.5:7.5, and 1:14) at a constant nitrogen concentration of 15 mmol/L. We examined Mo concentrations in roots, shoots, xylem and phloem sap, and subcellular fractions of leaves to contrast Mo uptake, transport, and subcellular distribution between ZS11 and L0917.

Results

Both the cultivars showed maximum biomass and Mo accumulation at the 7.5:7.5 ratio of NO3 ?:NH4 + while those were decreased by the 14:1 and 1:14 treatments. However, the percentages of root Mo (14.8% and 15.0% for L0917 and ZS11, respectively) were low under the 7.5:7.5 treatment, suggesting that the equal NO3 ?:NH4 + ratio promoted Mo transportation from root to shoot. The xylem sap Mo concentration and phloem sap Mo accumulation of L0917 were lower than those of ZS11 under the 1:14 treatment, which suggests that higher NO3 ?:NH4 + ratio was more beneficial for L0917. On the contrary, a lower NO3 ?:NH4 + ratio was more beneficial for ZS11 to transport and remobilize Mo. Furthermore, the Mo concentrations of both the cultivars’ leaf organelles were increased but the Mo accumulations of the cell wall and soluble fraction were reduced significantly under the 14:1 treatment, meaning that more Mo was accumulated in organelles under the highest NO3 ?:NH4 + ratio.

Conclusions

This investigation demonstrated that the capacities of Mo absorption, transportation and subcellular distribution play an important role in genotype-dependent differences in Mo accumulation under low or high NO3 ?:NH4 + ratio conditions.
  相似文献   

14.
Elemental mercury capture on heat-treated activated carbon (TAC) was studied using a laboratory-scale fixed bed reactor. The capability of TAC to perform Hg0 capture under both N2 and baseline gas atmospheres was studied and the effects of common acid gas constituents were evaluated individually to avoid complications resulting from the coexistence of multiple components. The results suggest that surface functional groups (SFGs) on activated carbon (AC) are vital to Hg0 capture in the absence of acid gases. Meanwhile, the presence of acid gas components coupled with defective graphitic lattices on TAC plays an important role in effective Hg0 capture. The presence of HCl, NO2, and NO individually in basic gases markedly enhances Hg0 capture on TAC due to the heterogeneous oxidation of Hg0 on acidic sites created on the carbon surface and catalysis by the defective graphitic lattices on TAC. Similarly, the presence of SO2 improves Hg0 capture by about 20%. This improvement likely results from the deposition of sulfur groups on the AC surface and oxidation of the elemental mercury by SO2 due to catalysis on the carbon surface. Furthermore, O2 exhibits a synergistic effect on Hg0 oxidation and capture when acid gases are present in the flue gases.  相似文献   

15.
The thermolysis of urea-water solution and its product, HNCO hydrolysis is investigated in a dual-reactor system. For the thermal decomposition below about 1073 K, the main products are ammonia (NH3) and isocyanic acid (HNCO) whereas at higher temperatures the oxidation processes take effect and the products include a low concentration of nitric oxide (NO) and nitrous oxide (N2O). The gas HNCO is quite stable and a high yield of HNCO is observed. The ratio of NH3 to HNCO increases from approximately 1.2 to 1.7 with the temperature. The chemical analysis shows that H radical is in favor of HNCO hydrolysis by instigating the reaction HNCO+H·→·NH2+CO and high temperature has positive effect on H radical. The hydrolysis of HNCO over an alumina catalyst made using a sol-gel process (designated as γ-Al2O3) is investigated. The conversion of HNCO is high even at the high space velocities (6×105 h-1) and low temperatures (393–673 K) in the tests with catalysts, which enhances HNCO hydrolysis and raises the ratio of NH3 to HNCO to approximately 100. The pure γ-Al2O3 shows a better catalytic performance than CuO/γ-Al2O3. The addition of CuO not only reduces the surface area but also decreases the Lewis acid sites which are recognized to have a positive effect on the catalytic activity. The apparent activation energy of the hydrolysis reaction amounts to about 25 kJ/mol in 393–473 K while 13 kJ/mol over 473 K. The overall hydrolysis reaction rate on catalysts is mainly determined by external and internal mass-transfer limitations.  相似文献   

16.
Black clay(BC) was used as a catalyst for the decolorization of Azure B dye by Fenton process. BC was modified by acid, alkali, distilled water, and calcination to check their changes in characterization and efficiency on decolorization of Azure B. Among three modified catalysts, maximum decolorization was obtained by acid-modified BC(AMBC) catalyst due to the highest removal of impurities, comparatively. The characterization of AMBC was done by Fourier-transform infrared spectroscopy and X-ray diffraction spectroscopy which show the presence of metal ion. The BET surface area, pore volume, pore size, and density of AMBC were calculated to be 79.402 m~2/g, 0.0608 m~3/g, 0.00306 nm, and 16 g/cm~3, respectively. The highest decolorization of 97.59% was achieved only in 10 min using AMBC at optimized calcination of 100 °C and 3 h of aging. AMBC was considered as the main catalyst for optimizing the different process parameters. Optimized conditions were obtained: pH 2, 0.2 mL of H_2O_2, catalyst dose 0.3 g, room temperature(30 °C), and stirring speed 400 r/min. The catalyst has showed excellent stability and reusability. It could remove more than 85% of color even after four cycles of run and less than negligible leaching of iron. AMBC has good recycling ability among other modified catalysts. To check the selectivity of catalyst, different dyes such as Congo red and mixed dye(mixture of Azure B and Congo red) decolorization were studied. In the present work, kinetic study was also carried out and a three-stage decolorization process was found.  相似文献   

17.
In recent years, excessive use of chemical nitrogen (N) fertilizers has resulted in the accumulation of excess ammonium (NH 4 + ) in many agricultural soils. Though rice is known as an NH 4 + -tolerant species and can directly absorb soil intact amino acids, we still know considerably less about the role of high exogenous NH 4 + content on rice uptake of soil amino acids. This experiment examined the effects of the exogenous NH 4 + concentration on rice uptake of soil adsorbed glycine in two different soils under sterile culture. Our data showed that the sorption capacity of glycine was closely related to soils;’ physical and chemical properties, such as organic matter and cation exchange capacity. Rice biomass was significantly inhibited by the exogenous NH 4 + content at different glycine adsorption concentrations. A three-way analysis of variance demonstrated that rice glycine uptake and glycine nutritional contribution were not related to its sorption capacity, but significantly related to its glycine:NH 4 + concentration ratio. After 21-d sterile cultivation, the rice uptake of adsorbed glycine accounted for 8.8%;–22.6% of rice total N uptake, which indicates that soil adsorbed amino acids theoretically can serve as an important N source for plant growth in spite of a high NH 4 + application rate. However, further studies are needed to investigate the extent to which this bioavailability is realized in the field using the 13C, 15N double labeling technology.  相似文献   

18.
采用高温和酸分别对粉煤灰进行改性,对比了改性后的粉煤灰对焦化废水深度处理的效果,确定了最佳工艺条件。结果表明,焦化废水COD135~170mg/L,NH3-N 96~135mg/L,体积150mL,pH值5,改性粉煤灰投加量25g,粒径100~160目,吸附时间60min,石灰量0.25g,高温改性粉煤灰对焦化废水COD和氨氮的去除率分别达到了85.2%和89.6%,而酸改性粉煤灰对焦化废水COD和氨氮的去除效果劣于高温改性粉煤灰,去除率分别为78.3%和82.7%。  相似文献   

19.
The Rhodobacter capsulatus hemA gene, which encodes 5-aminolevulinic acid synthase (ALAS), was expressed in Escherichia coli Rosetta (DE3) and the enzymatic properties of the purified recombinant ALAS (RC-ALAS) were studied. Compared with ALASs encoded by hemA genes from Agrobacterium radiobacter (AR-ALAS) and Rhodobacter sphaeroides (RS-ALAS), the specific activity of RC-ALAS reached 198.2 U/mg, which was about 31.2% and 69.5% higher than those of AR-ALAS (151.1 U/mg) and RS-ALAS (116.9 U/mg), respectively. The optimum pH values and temperatures of the three above mentioned enzymes were all pH 7.5 and 37 °C, respectively. Moreover, RC-ALAS was more sensitive to pH, while the other two were sensitive to temperature. The effects of metals, ethylene diamine tetraacetic acid (EDTA), and sodium dodecyl sulfate (SDS) on the three ALASs were also investigated. The results indicate that they had the same effects on the activities of the three ALASs. SDS and metal ions such as Co2+, Zn2+, and Cu2+ strongly inhibited the activities of the ALASs, while Mn2+ exerted slight inhibition, and K+, Ca2+, Ba2+, Mg2+, or EDTA had no significant effect. The specificity constant of succinyl coenzyme A [(k cat/K m)S-CoA] of RC-ALAS was 1.4989, which was higher than those of AR-ALAS (0.7456) and RS-ALAS (1.1699), showing its high catalytic efficiency. The fed-batch fermentation was conducted using the recombinant strain containing the R. capsulatus hemA gene, and the yield of 5-aminolevulinic acid (ALA) achieved was 8.8 g/L (67 mmol/L) under the appropriate conditions.  相似文献   

20.
The Bacillus firmus was immobilized into Ca-alginate beads according to the different initial biomass concentration, calcification time and activation time.Three types of immobilized Bacillus firmus beads were packed respectively in trickling biofilter to purify xylene contained waste gases,and the performance of immobilized-cell biofilter was compared with traditional biofilm attached biofilter packed with two types of ceramic pellets.The results showed that three types of immobilized beads had different capabilities for removing xylene and life-spans.Higher initial biomass in immobilized beads resulted in better performance but shorter life-span.Activation process can remarkably enhance the activity of bacteria,and the removal efficiency of xylene can substantially be improved.Calcification time had influence on life-span of immobilized beads.Without acclimation,the cell-entrapped biofilter can obtain the maximum elimination capacity of 92.4 g/(m~3·h).However,compared with biofilm attached biofilter,it has a poorer intrinsic drawback in volatile organic compounds (VOCs) removal due to the existence of excess mass transfer resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号