首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed the Knowledge Integration Environment (KIE) to promote lifelong learning. We believe that science courses can promote lifelong learning by offering students science models that apply to problems they encounter in their everyday lives and by engaging students in personally relevant science projects where they connect science models to typical science resources such as those found on the Internet. Our instructional framework, Scaffolded Knowledge Integration (SKI), guides the design of the Knowledge Integration Environment. In this paper we describe the Knowledge Integration Environment and report results of “design experiments” carried out to guide improvement of Knowledge Integration Environment instruction as well as to help us improve our understanding of lifelong learning.  相似文献   

2.
The Knowledge Integration Environment (KIE) activities were designed to promote lifelong science learning. This paper describes the partnership process that guided the design as well as the Scaffolded Knowledge Integration framework that gave the partnership a head start on creating effective materials. KIE activities take advantage of internet materials to engage students in debate of science questions like 'how far does light go?', to make scientifically oriented design decisions, and to critique science claims in the popular press. Other papers in this collection describe the design studies carried out to improve KIE activities. These studies have implications for improving the Scaffolded Knowledge Integration framework and can inform future designers of science instruction.  相似文献   

3.
This paper focuses on research that illustrates the important interplay between students' scientific epistemological views and their learning strategies. We address the problem of facilitating meaningful science learning as contrasted to rote memorization, which is practiced by many students and encouraged by instructional and evaluation practices. We show that when metacognitive tools are used to facilitate meaningful learning, positive consequences in learning of subject matter, attitudes toward science, and epistemological views can emerge. Positivistic epistemology continues to be the subtle enemy to encouraging meaningful learning and constructivist views of the nature of science and knowing. If you're a scientist, you can say that all knowledge is scientific and everything can be based on fact and experiment. I've taken so many science classes that I've started to believe that.  相似文献   

4.
Access to the internet increases variability in media and source authority for students who generally rely on teachers and textbooks. Some internet sources are more credible than others (e.g., a New York Times article on the web vs. a private citizen's homepage). Some sources are impressively produced with graphics and media-enhancements, while others are unadorned text. We explore the question of how source authority and media-enhancement impact students' interpretation of evidence as they conduct a Knowledge Integration Environment project as part of integrated science instruction in a culturally diverse high school.  相似文献   

5.
Michael P. Clough 《Interchange》1997,28(2-3):191-204
Many science teachers devote a portion of their course to improving students' understanding of the nature of science. However, despite a one- or two-week effort, students often cling to their misconceptions. This tenacity is not surprising in light of conceptual change theory. How then are teachers to facilitate more contemporary portrayals of the nature of science? The key is to maintain in students a sense of dissatisfaction with their archaic notions of the nature of science. Drawing from my recent six year experience teaching high school biology and chemistry, this paper provides examples of how science teachers might initiate and maintain pressure on students' misconceptions regarding the nature of science, and facilitate student consideration of more contemporary views.  相似文献   

6.
This study, conducted in an inner-city middle school, followed the conceptual changes shown in 25 students' writing over a 12-week science unit. Conceptual changes for 6 target students are reported. Student understanding was assessed regarding the nature of matter and physical change by paper-and-pencil pretest and posttest. The 6 target students were interviewed about the goal concepts before and after instruction. Students' writing during lesson activities provided qualitative data about their understandings of the goal concepts across the science unit. The researcher constructed concept maps from students' written statements and compared the maps across time to assess changes in the schema of core concepts, complexity, and organization as a result of instruction. Target students' changes were studied in detail to determine patterns of conceptual change. After patterns were located in target students' maps, the remaining 19 students' maps were analyzed for similar patterns. The ideas that students identified in their writing showed changes in central concepts, complexity, and organization as the lessons progressed. When instructional events were analyzed in relation to students' demonstrated ideas, understanding of the goal conceptions appeared in students' writing more often when students had opportunities to explain their new ideas orally and in writing.  相似文献   

7.
In this paper we consider the ways in which students' activities during project work are influenced by their images of science, e.g. their views about the purposes of science, the nature of scientific knowledge and the role of social processes in scientific activity. We also investigate the kinds of project activities which promote the development of students' images of science. We draw on case studies of 11 science students' experiences of investigative project work in their final year at university. For one of these students naive views about the epistemology of science constrain her project activities. We suggest that the concept of 'epistemic demand' may help in anticipating difficulties that students might have during project work. We also find that students' images of science are developed as a result of messages communicated both implicitly and explicitly through project work.  相似文献   

8.
We investigated how 2 different curricular scaffolds (context-specific vs. generic), teacher instructional practices, and the interaction between these 2 types of support influenced students' learning of science content and their ability to write scientific arguments to explain phenomena. The context-specific scaffolds provided students with hints about the task and what content knowledge to use in or incorporate into their writing. The generic scaffolds supported students in understanding a general framework (i.e., claim, evidence, and reasoning) regardless of the content area or task. This study focused on an 8-week middle school chemistry curriculum that was enacted by 6 teachers with 578 students during the 2004–2005 school year. Analyses of identical pre- and posttests as well as videotapes of teacher enactments revealed that the curricular scaffolds and teacher instructional practices were synergistic in that the effect of the written curricular scaffolds depended on the teacher's enactment of the curriculum. The context-specific curricular scaffolds were more successful in supporting students in writing scientific arguments to explain phenomena, but only when teachers' enactments provided explicit domain-general support for the claim, evidence, and reasoning framework, suggesting the importance of both types of support in successful learning environments.  相似文献   

9.
10.
As a key objective, secondary school mathematics teachers seek to improve the proof skills of students. In this paper we present an analytic framework to describe and analyze students' answers to proof problems. We employ this framework to investigate ways in which dynamic geometry software can be used to improve students' understanding of the nature of mathematical proof and to improve their proof skills. We present the results of two case studies where secondary school students worked with Cabri-Géeomèetre to solve geometry problems structured in a teaching unit. The teaching unit had theaims of: i) Teaching geometric concepts and properties, and ii) helping students to improve their conception of the nature of mathematical proof and to improve their proof skills. By applying the framework defined here, we analyze students' answers to proof problems, observe the types of justifications produced, and verify the usefulness of learning in dynamicgeometry computer environments to improve students' proof skills.  相似文献   

11.
Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web-based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post-test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in-unit and post-unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.  相似文献   

12.
Generations of students are graduating from secondary school disinterested in post-secondary study of science or pursuing careers in science-related fields beyond formal education. We propose that destabilising such disinterest among future students requires science educators to begin listening to secondary school students regarding their views of how science learning is made interesting within the science classroom. Studies on students’ interest in response to instructional strategies applied in the classroom communicate the opinions (i.e. the ‘voice’) of students about the strategies they believe make their classroom learning interesting. To this end, this scoping study (1) collects empirical studies that present from various science and non-science academic domains students’ views about how to make classroom learning interesting; (2) identifies common instructional strategies across these domains that make learning interesting; and (3) forwards an instructional framework called TEDI ([T]ransdisciplinary Connections; Mediated [E]ngagement; Meaningful [D]iscovery; and Self-determined [I]nquiry), which may provide secondary school science teachers with a practical instructional approach for making learning science genuinely interesting among their students within the secondary school science classroom context.  相似文献   

13.
To provide insight into issues of gender and ethnicity in science education, we examine the views of approximately 60 secondary science teachers and university scientists from three different research projects. In each project, participants and researcher explored the intersection of professional and personal identities; views of the nature of science; beliefs related to students' experiences in science education; and kinds of curricular and instructional strategies used to promote access and equity for all students. Participants' interviews were analyzed qualitatively for patterns across these four dimensions of inclusive science education. Analysis of data revealed a wide range of beliefs and experiences along each dimension. From our findings, we argue for careful examination of the ways identities shape instructors' professional experiences and educational practices; critical, constructive conversations about feminist science studies scholarship between professional developers and science teachers or scientists; and reasoned reflection on how views of students can inform recommendations for inclusive content and instruction. We conclude with the call for increased sophistication in the conceptualization and implementation of solutions to the “problem” of women and ethnic minorities in science education, for balancing recognition of systematic gender and ethnic bias with sensitivity to instructors and students' diverse interests and experiences. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 511–547, 2000  相似文献   

14.
The purpose of this study was to examine the ways in which elementary teachers applied their understanding of conceptual learning and teaching to their instructional practices as they became knowledgeable about conceptual change pedagogy. Teachers' various ways to interpret and utilize students' prior ideas were analyzed in both epistemological and ontological dimensions of learning. A total of 14 in‐service elementary teachers conducted an 8‐week‐long inquiry into students' conceptual learning as a professional development course project. Major data sources included the teachers' reports on their students' prior ideas, lesson plans with justifications, student performance artifacts, video‐recorded teaching episodes, and final reports on their analyses of student learning. The findings demonstrated three epistemologically distinct ways the teachers interpreted and utilized students' prior ideas. These supported Kinchin's epistemological categories of perspectives on teaching including positivist, misconceptions, and systems views. On the basis of Chi's and Thagard's theories of conceptual change, the teachers' ontological understanding of conceptual learning was differentiated in two ways. Some teachers taught a unit to change the ontological nature of student ideas, whereas the others taught a unit within the same ontological categories of student ideas. The findings about teachers' various ways of utilizing students' prior ideas in their instructional practices suggested a number of topics to be addressed in science teacher education such as methods of utilizing students' cognitive resources, strategies for purposeful use of counter‐evidence, and understanding of ontological demands of learning. Future research questions were suggested. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1292–1317, 2007  相似文献   

15.
There are many ways to understand the gap in science learning and achievement separating low‐income, ethnic minority and linguistic minority children from more economically privileged students. In this article we offer our perspective. First, we discuss in broad strokes how the relationship between everyday and scientific knowledge and ways of knowing has been conceptualized in the field of science education research. We consider two dominant perspectives on this question, one which views the relationship as fundamentally discontinuous and the other which views it as fundamentally continuous. We locate our own work within the latter tradition and propose a framework for understanding the everyday sense‐making practices of students from diverse communities as an intellectual resource in science learning and teaching. Two case studies follow in which we elaborate this point of view through analysis of Haitian American and Latino students' talk and activity as they work to understand metamorphosis and experimentation, respectively. We conclude with a discussion of the implications of this new conceptualization for research on science learning and teaching. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 529–552, 2001  相似文献   

16.
For students to meaningfully engage in science practices, substantive changes need to occur to deeply entrenched instructional approaches, particularly those related to classroom discourse. Because teachers are critical in establishing how students are permitted to interact in the classroom, it is imperative to examine their role in fostering learning environments in which students carry out science practices. This study explores how teachers describe, or frame, expectations for classroom discussions pertaining to the science practice of argumentation. Specifically, we use the theoretical lens of a participation framework to examine how teachers emphasize particular actions and goals for their students' argumentation. Multiple-case study methodology was used to explore the relationship between two middle school teachers' framing for argumentation, and their students' engagement in an argumentation discussion. Findings revealed that, through talk moves and physical actions, both teachers emphasized the importance of students driving the argumentation and interacting with peers, resulting in students engaging in various types of dialogic interactions. However, variation in the two teachers' language highlighted different purposes for students to do so. One teacher explained that through these interactions, students could learn from peers, which could result in each individual student revising their original argument. The other teacher articulated that by working with peers and sharing ideas, classroom members would develop a communal understanding. These distinct goals aligned with different patterns in students' argumentation discussion, particularly in relation to students building on each other's ideas, which occurred more frequently in the classroom focused on communal understanding. The findings suggest the need to continue supporting teachers in developing and using rich instructional strategies to help students with dialogic interactions related to argumentation. This work also sheds light on the importance of how teachers frame the goals for student engagement in this science practice.  相似文献   

17.
This study explored factors predicting the extent to which high school students (N = 140) acquired meaningful understanding of the biological topics of meiosis, the Punnett-square method, and the relationships between these topics. This study (a) examined mental modeling as a technique for measuring students' meaningful understanding of the topics, (b) measured students' predisposed, generalized tendency to learn meaningfully (meaningful learning orientation), (c) determined the extent to which students' meaningful learning orientation predicted meaningful understanding beyond that predicted by aptitude and achievement motivation, (d) experimentally tested two instructional treatments (relationships presented to students, relationships generated by students), (e) explored the relationships of meaningful learning orientation, prior knowledge, instructional treatment, and all interactions of these variables in predicting meaningful understanding. The results of correlations and multiple regressions indicated that meaningful learning orientation contributed to students' attainment of meaningful understanding independent of aptitude and achievement motivation. Meaningful learning orientation and prior knowledge interacted in unique ways for each topic to predict students' attainment of meaningful understanding. Instructional treatment had relatively little relationship to students' acquisition of meaningful understanding, except for learners midrange between meaningful and rote. These findings imply that a meaningful learning approach among students may be important, perhaps as much or more than aptitude and achievement motivation, for their acquisition of interrelated, meaningful understandings of science.  相似文献   

18.
19.
This is one of a series of studies conducted by a high school physics teacher, who used constructivist referents to plan and enact the curriculum, and to understand and improve the learning environment in his physics classes. Data were collected in the course of a two-year physics course including (a) repeated administrations of a classroom learning environment survey, (b) written essays on the topics of knowing, learning, and classroom learning environment, and (c) interviews. While there was a general trend for students to adopt more constructivist views of knowing and learning, there was also a small number who resisted to adapt to the constructivist learning environment in their physics course. Two case studies of individual students are used to illustrate the interactions of the learning environment, student understanding of scientific knowledge, and the nature of science, and students' views of their own learning.  相似文献   

20.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号