首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Individual growth trajectories of psychological phenomena are often theorized to be nonlinear. Additionally, individuals’ measurement schedules might be unique. In a structural equation framework, latent growth curve model (LGM) applications typically have either (a) modeled nonlinearity assuming some degree of balance in measurement schedules, or (b) accommodated truly individually varying time points, assuming linear growth. This article describes how to fit 4 popular nonlinear LGMs (polynomial, shape-factor, piecewise, and structured latent curve) with truly individually varying time points, via a definition variable approach. The extension is straightforward for certain nonlinear LGMs (e.g., polynomial and structured latent curve) but in the case of shape-factor LGMs requires a reexpression of the model, and in the case of piecewise LGMs requires introduction of a general framework for imparting piecewise structure, along with tools for its automation. All 4 nonlinear LGMs with individually varying time scores are demonstrated using an empirical example on infant weight, and software syntax is provided. The discussion highlights some advantages of modeling nonlinear growth within structural equation versus multilevel frameworks, when time scores individually vary.  相似文献   

2.
This Monte Carlo study investigated the impacts of measurement noninvariance across groups on major parameter estimates in latent growth modeling when researchers test group differences in initial status and latent growth. The average initial status and latent growth and the group effects on initial status and latent growth were investigated in terms of Type I error and bias. The location and magnitude of noninvariance across groups was related to the location and magnitude of bias and Type I error in the parameter estimates. That is, noninvariance in factor loadings and intercepts was associated with the Type I error inflation and bias in the parameter estimates of the slope factor (or latent growth) and the intercept factor (or initial status), respectively. As noninvariance became large, the degree of Type I error and bias also increased. On the other hand, a correctly specified second-order latent growth model yielded unbiased parameter estimates and correct statistical inferences. Other findings and implications on future studies were discussed.  相似文献   

3.
Social scientists are frequently interested in identifying latent subgroups within the population, based on a set of observed variables. One of the more common tools for this purpose is latent class analysis (LCA), which models a scenario involving k finite and mutually exclusive classes within the population. An alternative approach to this problem is presented by the grade of membership (GoM) model, in which individuals are assumed to have partial membership in multiple population subgroups. In this respect, it differs from the hard groupings associated with LCA. The current Monte Carlo simulation study extended on prior work on the GoM by investigating its ability to recover underlying subgroups in the population for a variety of sample sizes, latent group size ratios, and differing group response profiles. In addition, this study compared the performance of GoM with that of LCA. Results demonstrated that when the underlying process conforms to the GoM model form, the GoM approach yielded more accurate classification results than did LCA. In addition, it was found that the GoM modeling paradigm yielded accurate results for samples as small as 200, even when latent subgroups were very unequal in size. Implications for practice were discussed.  相似文献   

4.
This study is a methodological-substantive synergy, demonstrating the power and flexibility of exploratory structural equation modeling (ESEM) methods that integrate confirmatory and exploratory factor analyses (CFA and EFA), as applied to substantively important questions based on multidimentional students' evaluations of university teaching (SETs). For these data, there is a well established ESEM structure but typical CFA models do not fit the data and substantially inflate correlations among the nine SET factors (median rs = .34 for ESEM, .72 for CFA) in a way that undermines discriminant validity and usefulness as diagnostic feedback. A 13-model taxonomy of ESEM measurement invariance is proposed, showing complete invariance (factor loadings, factor correlations, item uniquenesses, item intercepts, latent means) over multiple groups based on the SETs collected in the first and second halves of a 13-year period. Fully latent ESEM growth models that unconfounded measurement error from communality showed almost no linear or quadratic effects over this 13-year period. Latent multiple indicators multiple causes models showed that relations with background variables (workload/difficulty, class size, prior subject interest, expected grades) were small in size and varied systematically for different ESEM SET factors, supporting their discriminant validity and a construct validity interpretation of the relations. A new approach to higher order ESEM was demonstrated, but was not fully appropriate for these data. Based on ESEM methodology, substantively important questions were addressed that could not be appropriately addressed with a traditional CFA approach.  相似文献   

5.
In latent growth modeling, measurement invariance across groups has received little attention. Considering that a group difference is commonly of interest in social science, a Monte Carlo study explored the performance of multigroup second-order latent growth modeling (MSLGM) in testing measurement invariance. True positive and false positive rates in detecting noninvariance across groups in addition to bias estimates of major MSLGM parameters were investigated. Simulation results support the suitability of MSLGM for measurement invariance testing when either forward or iterative likelihood ratio procedure is applied.  相似文献   

6.
The authors investigated 2 issues concerning the power of latent growth modeling (LGM) in detecting linear growth: the effect of the number of repeated measurements on LGM's power in detecting linear growth and the comparison between LGM and some other approaches in terms of power for detecting linear growth. A Monte Carlo simulation design was used, with 3 crossed factors (growth magnitude, number of repeated measurements, and sample size) and 1,000 replications within each cell condition. The major findings were as follows: For 3 repeated measurements, a substantial proportion of samples failed to converge in structural equation modeling; the number of repeated measurements did not show any effect on the statistical power of LGM in detecting linear growth; and the LGM approach outperformed both the dependent t test and repeated-measures analysis of variance (ANOVA) in terms of statistical power for detecting growth under the conditions of small growth magnitude and small to moderate sample size conditions. The multivariate repeated-measures ANOVA approach consistently underperformed the other tests.  相似文献   

7.
Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact educational policy decisions. A Monte Carlo simulation study was conducted to examine the accuracy of six information-based criteria (i.e., AIC, CAIC, AICC, BIC, nBIC, and HQIC) when selecting among various growth trajectories modeled using LGM under different sample size, number of time points, and growth trajectory scenarios. The accuracy of the information criteria generally improved as sample size increased. The cubic and linear growth models were distinguished most accurately by the information criteria. All of the nonlinear models were more easily distinguished as the number of time points increased. The comparative performance of the six information criteria was dependent upon the manipulated conditions. Implications of the findings are discussed.  相似文献   

8.
Multilevel and latent growth modeling analysis (GMA) is often used to compare independent groups in linear random slopes of outcomes over time, particularly in randomized controlled trials. The unstandardized coefficient for the effect of group on the slope from a linear GMA can be transformed into a model-estimated effect size for the group difference at the end of a study. Because effect sizes vary nonlinearly in quadratic GMA, the effect size at the end of a study using quadratic GMA cannot be derived from a single coefficient, and cannot be used to estimate effect sizes at intermediate time points with backward extrapolation. This article formulates equations and associated input commands in Mplus for time-varying effect sizes for quadratic GMA. Illustrative analyses that produced these time-varying effect sizes were presented, and a Monte Carlo study found that bias in the effect sizes and their confidence intervals was ignorable.  相似文献   

9.
The analysis of longitudinal data collected from nonexchangeable dyads presents a challenge for applied researchers for various reasons. This article introduces the dyadic curve-of-factors model (D–COFM), which extends the curve-of-factors model (COFM) proposed by McArdle (1988) for use with nonexchangeable dyadic data. The D–COFM overcomes problems with modeling composite scores across time and instead permits examination of the growth in latent constructs over time. The D–COFM also appropriately models the interdependency among nonexchangeable dyads. Different parameterizations of the D–COFM are illustrated and discussed using a real data set to aid applied researchers when analyzing dyadic longitudinal data.  相似文献   

10.
The latent growth curve modeling (LGCM) approach has been increasingly utilized to investigate longitudinal mediation. However, little is known about the accuracy of the estimates and statistical power when mediation is evaluated in the LGCM framework. A simulation study was conducted to address these issues under various conditions including sample size, effect size of mediated effect, number of measurement occasions, and R 2 of measured variables. In general, the results showed that relatively large samples were needed to accurately estimate the mediated effects and to have adequate statistical power, when testing mediation in the LGCM framework. Guidelines for designing studies to examine longitudinal mediation and ways to improve the accuracy of the estimates and statistical power were discussed.  相似文献   

11.
This study investigated the optimal strategy for model specification search under the latent growth modeling (LGM) framework, specifically on searching for the correct polynomial mean or average growth model when there is no a priori hypothesized model in the absence of theory. In this simulation study, the effectiveness of different starting models on the search of the true mean growth model was investigated in terms of the mean and within-subject variance-covariance (V-C) structure model. The results showed that specifying the most complex (i.e., unstructured) within-subject V-C structure with the use of LRT, ΔAIC, and ΔBIC achieved the highest recovery rate (>85%) of the true mean trajectory. Implications of the findings and limitations are discussed.  相似文献   

12.
This simulation study focused on the power for detecting group differences in linear growth trajectory parameters within the framework of structural equation modeling (SEM) and compared the latent growth modeling (LGM) approach to the more traditional repeated-measures analysis of variance (ANOVA) approach. Several patterns of group differences in linear growth trajectories were considered. SEM growth modeling consistently showed higher statistical power for detecting group differences in the linear growth slope than repeated-measures ANOVA. For small group differences in the growth trajectories, large sample size (e.g., N > 500) would be required for adequate statistical power. For medium or large group differences, moderate or small sample size would be sufficient for adequate power. Some future research directions are discussed.  相似文献   

13.
Latent growth modeling allows social behavioral researchers to investigate within-person change and between-person differences in within-person change. Typically, conventional latent growth curve models are applied to continuous variables, where the residuals are assumed to be normally distributed, whereas categorical variables (i.e., binary and ordinal variables), which do not hold to normal distribution assumptions, have rarely been used. This article describes the latent growth curve model with categorical variables, and illustrates applications using Mplus software that are applicable to social behavioral research. The illustrations use marital instability data from the Iowa Youth and Family Project. We close with recommendations for the specification and parameterization of growth models that use both logit and probit link functions.  相似文献   

14.
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a nonlinear manner are common to all subjects. In this article we describe how a variant of the Michaelis–Menten (M–M) function can be fit within this modeling framework using Mplus 6.0. We demonstrate how observed and latent covariates can be incorporated to help explain individual differences in growth characteristics. Features of the model including an explication of key analytic decision points are illustrated using longitudinal reading data. To aid in making this class of models accessible, annotated Mplus code is provided.  相似文献   

15.
The purpose of this simulation study was to assess the performance of latent variable models that take into account the complex sampling mechanism that often underlies data used in educational, psychological, and other social science research. Analyses were conducted using the multiple indicator multiple cause (MIMIC) model, which is a flexible and effective tool for relating observed and latent variables. The data were simulated in a hierarchical framework (e.g., individuals nested in schools) so that a multilevel modeling approach would be appropriate. Analyses were conducted accounting for and not accounting for the nested data to determine the impact of ignoring such multilevel data structures in full structural equation models. Results highlight the differences in modeling results when the analytic strategy is congruent with the data structure and what occurs when this congruency is absent. Type I error rates and power for the standard and multilevel methods were similar for within-cluster variables and for the multilevel model with between-cluster variables. However, Type I error rates were inflated for the standard approach when modeling between-cluster variables.  相似文献   

16.
Latent growth curve models are widely used in the social and behavioral sciences to study complex developmental patterns of change over time. The trajectories of these developmental patterns frequently exhibit distinct segments in the studied variables. Latent growth models with piecewise functions for repeated measurements of variables have become increasingly popular for modeling such developmental trajectories. A major problem with using piecewise models is determining the precise location of the point where the change in the process has occurred and uncovering the related number of segments. The purpose of this paper is to introduce an optimization procedure that can be used to determine both the segments and location of the knots in piecewise linear latent growth models. The procedure is illustrated using empirical data in order to detect the number of segments and change points. The results demonstrate the capabilities of the procedure for fitting latent growth curve models.  相似文献   

17.
Applying item response theory models to repeated observations has demonstrated great promise in developmental research. By allowing the researcher to take account of the characteristics of both item response and measurement error in longitudinal trajectory analysis, it improves the reliability and validity of latent growth curve analysis. This has enabled the study, to differentially weigh individual items and examine developmental stability and change over time, to propose a comprehensive modeling framework, combining a measurement model with a structural model. Despite a large number of components requiring attention, this study focuses on model formulation, evaluates the performance of the estimators of model parameters, incorporates prior knowledge from Bayesian analysis, and applies the model using an illustrative example. It is hoped that this fundamental study can demonstrate the breadth of this unified latent growth curve model.  相似文献   

18.
Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and evaluate their performance with a Monte Carlo simulation study. We found that the 4 models performed similarly with respect to model fit, bias of parameter estimates, Type I error, and power to test the treatment effect. To demonstrate a multigroup latent growth model with dummy treatment indicators, we estimated the effect of students changing schools during elementary school years on their reading and mathematics achievement, using data from the Early Childhood Longitudinal Study Kindergarten Cohort.  相似文献   

19.
Exploratory structural equation modeling (ESEM) is an approach for analysis of latent variables using exploratory factor analysis to evaluate the measurement model. This study compared ESEM with two dominant approaches for multiple regression with latent variables, structural equation modeling (SEM) and manifest regression analysis (MRA). Main findings included: (1) ESEM in general provided the least biased estimation of the regression coefficients; SEM was more biased than MRA given large cross-factor loadings. (2) MRA produced the most precise estimation, followed by ESEM and then SEM. (3) SEM was the least powerful in the significance tests; statistical power was lower for ESEM than MRA with relatively small target-factor loadings, but higher for ESEM than MRA with relatively large target-factor loadings. (4) ESEM showed difficulties in convergence and occasionally created an inflated type I error rate under some conditions. ESEM is recommended when non-ignorable cross-factor loadings exist.  相似文献   

20.
Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture modeling, as well as the application to complex multilevel sampling designs. The goal of this study was to investigate—through a Monte Carlo simulation study—the performance of several methods for parameterizing multilevel latent class analysis. Of particular interest was the comparison of several such models to adequately fit Level 1 (individual) data, given a correct specification of the number of latent classes at both levels (Level 1 and Level 2). Results include the parameter estimation accuracy as well as the quality of classification at Level 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号