首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
平均值法是数学中常用的解题方法,本文拟介绍平均值法在分解因式中的应用,这往往是许多教师容易忽略的。例1 分解因式(x~2-2x)(x~2-2x-2)-3。解:x~2-2x与x~2-2x-2的平均值为M=x~2-2x-1。∴原式=(M+1)(M-1)-3=M~2-4=(M+2)(M-2)=(x~2-2x+1)(x~2-2x-3)=(x-1)~2(x+1)(x-3)。例2 分解因式 4(x+5)(x+6)(x+10)(x+12)-3x~2。  相似文献   

2.
例1、计算(x-1)/(x~2-3x+2)+(x+1)/(x-2)-(x~2-x-6)/(x~2-4) 解:原式=(x-1)/[(x-1)(x-2)]+(x+1)/(x-2)[(x-3)(x+2)]/[(x+2)(x-2)]=1/(x-2)+(x+1)/(x-2)-(x-3)/(x-2)=[1+(x+1)-(x-3)]/(x-2)=5/(x-2) 说明:本题看起来是异分母的分式相加减,但把两个较复杂的公式的分子、分母分解因式后,约去公因式,就变简单了,且是同分母的分式相加减。若不这样做,则会异常繁杂。  相似文献   

3.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

4.
本文介绍解无理方程的八种方法,供读者参考。 一、观察法。不解方程,用算术根的概念及不等式的性质判断方程的解。 例1.解下列方程 (1)(2-x)~(1/2) (x-3)~(1/2)=4; (2)(x~2-6x 9)~(1/2) 解(1) 由 2-x≥0,x-3≥0有x≤2且x≥3,无解。 (2)(x~2-6x 9)~(1/2)=[(x-3)~2]~(1/2)=|x-3|。原方程为 |x-3|=x-3。 解为x≥3。  相似文献   

5.
-.选择问:(3分×10=30分)1.下列因式分解正确的是( ) (A)x~2 6x 5=(x 3)(x=2) (B)4x~2-y~2=(4x y)(4x-y) (C)a~4-x~2-4ax-4a~2=(a~2 x 2a)(a~2-x-2a~2) (D)x~4-4x~2 3=(x~2-1)(x~2-3)2.使分式(x-1)/(|x| 1)有意义的x的取值是( ) (A)x≠±1 (B)x≠1 (C)x≠-1 (D)x取一切数3.下列多项式因式分解后不含(x-1)的为 ( ) (A) x~3-x~2-x 1 (B)x~2 y-xy-x  相似文献   

6.
1 引例解不等式(x-4)(x~2-3x-4)~(1/2)≥0.在一次练习中,几乎所有同学均采用如下解法:原不等式等价于不等式组(?)解之得 x≥4,故原不等式解集为{x|x≥4}.显然,当 x=-1时,原不等式也能成立,因此,以上解答错了.2 探讨一  相似文献   

7.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

8.
因式分解和整式乘法是互逆的恒等变形。除课本上介绍的四种基本方法外,现再介绍三种特殊方法和一些特殊的技巧。 (一)添项或折项法:有些多项式的分解不能直接分组,通常采用添项(添缺项〕或拆项再分组的方法。例1分解因式;(1)x~3 5x~2 3x-9; (2)x~3 3x~2 5x 3; (3) x~4 4。解:(1)原式=(x~3-x~2) (6x~2 3x-9)(拆项) =x~2(x-1) (x-1)(6x 9) =(x-1)(x 3)~2; (2) 原式=(x~3 x~2) (2x~2 5x 3) (拆项)  相似文献   

9.
十字相乘法是因式分解的一种较方便的方法,这里加以介绍.我们考察多项式:x~2-8x+15 (1)用配方法因式分解:原式=x~2-8x+16-1=(x-4)~2-1=(x-4-1)(x-4+1)=(x-5)(x-3)至此,我们已经把(1)式分解成两个因式了.现在我们来研究这两个因式(x-5)、(x-3)与多项式x~2-8x+15有怎样的关系?从等式中可以看出,多项式二次项的系数1刚好等于两个因式中x的系数的积1×1=1,常数项15刚好是两个因式的常数项的积(-3)(-5)=15,一次项的系数(-8)刚好是因式的x的系数1、1和常数项-3、-5交叉相乘积的和1×(-5)+1×(-3)=-8.即  相似文献   

10.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

11.
正随着新课改的不断深入,很多教师越来越重视课本中的例题教学了.大家的共识是:对课本中的例题进行变式教学,有利于提高数学课堂的教学效益.现举一例,说明如下.例题计算:(x-3)(x+3)(x~2+9).(苏科版七年级(下).解原式=(x~2-9)(x~2+9)=x~4-81.变式1计算:(1)(xy-3)(xy+3)(x~2y~2+9);(2)(x-3y)(x+3y)(x~2+9y~2);解(1)原式=(x~2y~2-9)(x~2y~2+9)=x~4y~4-81;  相似文献   

12.
本刊1985年第四期刊登了《复数证明不等式初探》一文,该文能灵活运用不等式|z_1 z_2|≤|z_1| |z_2|进行解题,阅后得益非浅,但美中不足之处是在使用这个不等式时没有指出等号成立条件。从而学生在使用不等式|z_1 z_2|≤|z_1| |z_2|时存在盲目性。这正是我们教师应该指点之处。为了说明问题,我们将原文中例6,求证: (x~2-4x-5)~(1/2) (10-2x x~2)~(1/2)≥17~(1/2)(原文题目有印错)改为: 例1:求函数y:(x~2-4x-5)~(1/2) (10-2x x~2)~(1/2)的极小值。  相似文献   

13.
<正> 代数一、填空: 1、计算:[(-2)~2]~(-(1/2))+2°/(2~(1/2)) -1/(|1-2~(1/2)|)=-(2~(1/2)+1)/2 2、把x~5y-x~3y+2x~2y-xy分解因式为xy(x~2+x-1)(x~2-x+1) 3、已知((2a+b~(-1))~2+|2-a~2|)/(a+2~(1/2))=0,则(a-b)/(a+b)=(3/5) 4、计算1/2lg25+lg2-lg0.1~(1/2)-log_29×log_32=-(1/2) 5、设A={x:|x|<2}, B={x:x~2-4x+3≤0},则A∩B=1≤x<2;A∪B=-23的解集为{x:x>4}∪{x:0相似文献   

14.
全日制十年制学校,初中数学课本,代数第四册中第194页“初中代数总复习参考题”,第七题第(11)(12)小题: 7(11)分解多项式: (x+1)(x+2)(x+3)(x+4)-24; (12)分解多项式; (x~2+3x-3)(x~2+3x+4)-8。一般的解法是用十字交叉法分解,现在介绍用“求算术平均值法”分解,这种解法的过程是: 7(11) 分解多项式: (x+1)(x+2)(x+3)(x+4)-24。解原式=(x~2+5x+4)(x~2+5x+6)-24因多项式:x~2+5x+4和x~2+5x+6的算术平均值M=x~2+5x+5,  相似文献   

15.
在新课标中,教材不是唯一的课程资源,但作为主要的课程资源,我们不能忽视它在课堂教学中的地位和作用.同一本教材、同一个内容,如何讲出自己的风格,从而让学生更好地感受课程的内涵?笔者从以下几个方面加以阐述,希望能起到抛砖引玉的效果.1 抓住定理或公式的特征进行延伸案例1 当我们通过创设情境把平方差公式(a+b)(a-b)=a~2-b~2的结构特点讲清楚之后,提问学生:(x-1)(x~2+1)(x+1)=?生:先把(x~2+1),(x+1)两式按乘法交换率交换位置,再两次使用平方差公式.即(x-1)(x~2+1)(x+1)=(x-1)(x+1)(x~2+1)=(x~2-1)(x~2+1)=x~4-1.  相似文献   

16.
一元二次方程ax~2+bx+c=0(a≠0)是初中代数的一个重要内容之一,也是中考、各类竞赛考查的重要内容之一.同学们应全方位、多角度地诠释本节内容,下面就谈谈学习这部分内容应注意的几个问题,供参考.一、在解一元二次方程时,要善于选择合理、简捷的方法,不要轻易使用公式法例1选用适当的方法解下列方程:(1)2x~2-6=0;(2)(x-1)(x+2)=2(x+2);(3)x~2-5x-6=0;(4)x~2+x-1=0.分析方程2x~2-6=0缺少一次项,可采用直接开平方法求解;对于方程(x-1)(x+2)=2(x+2),可把  相似文献   

17.
用适当方法构造与原问题有关的方程,利用方程的知识使原题获解,此为“辅助方程法”。一、解方程(组) 例1 解关于x的方程 x~4 6x~3-2(a-3)x~2 2(3a 4)x 2a a~2=0 解:化为a的方程: a~2-2(x~2-3x-1)a (x~4-6x~3 6x~2 8x)=0解得a=x~2-4x,a=x~2-2x-2。故得原方程的解x_(1,2)=2±4~(1/2) a,x_(3,4)=1±(3 a)~(1/2)(注;a<-3时,有虚根)  相似文献   

18.
函数与方程的思想在初中数学中,占有重要地位,若能把握函数与方程的思想,增强用其解决问题的意识,就能发现运用它可以快速解答有关的选择题。 以下举例分类加以说明。1 条件含变量,答案是常数的选择题 例1 计算: (3x 1)/(x 5)-(2x~2-4x 8)/(x~2 2x-15)÷(x~3 8)/(x-3)(x~2-4)的结果是( )。  相似文献   

19.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

20.
有条件限制的双变元取值问题,涉及领域宽,知识面广,需要善于转化,可以通过消元转化为函数求值域问题,但是当题目具有一定特殊形式对,也可通过另外两种常用方法转化.一、消元变函数例1 已知3x~2+2y~2=6x,求 u=x~2+y~2的取值范围.分析:为了求出 u 的范围,需将变量 x,y 用一个变量 x 表示出 u,此时要注意 x 的范围.解:由3x~2+2y~2=6x,得y~2=(1/2)(6x-3x~2)∵y~2≥0,∴x∈[0,2]u=x~2+y~2=x~2+(1/2)(6x-3x~2)=-(1/2)(x-3)~2+(9/2)结合二次函数的图象可知,u∈[0,4]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号