首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This research involved na?ve physics learners who were interested in majoring in science or engineering. In a semester-long quasi-experimental study, open-ended pretests and weekly interviews were used to analyse the progressive development of students’ conceptions relating to sound and wave motion. Semi-structured interviews were also conducted to elucidate: (1) how their conceptions developed from everyday conceptions to unclear scientific conceptions to scientific conceptions, and (2) their beliefs of physics knowledge. Despite efforts to enable these students to learn physics, the findings showed that only two out of ten students developed acceptable physics conceptions during the course that would enable them to pursue the subject to a higher level. Also, students’ conceptual development was found to be related to their cognitive understanding and to epistemological beliefs of physics. Therefore, to facilitate na?ve physics learners’ success in a general physics course, in addition to the acquisition of content knowledge, explicit emphasis needs to be placed on the nature of physics knowledge.  相似文献   

2.
Using classroom observation and video recording methods, we performed a comparative study on the forms and content of dialogues in the classrooms between expert and novice teachers. Of the 55 lessons surveyed, it was found that expert teachers tend to use analytical and comparative questions more frequently to detect students’ mathematical reasoning. Students and teachers work together to determine the answer to a question and the dialogue in the classroom takes place in a way that students present an answer, the teacher and the other students question the answer, and then the students explain the answer. On the other hand, a novice teacher often tends to give students hints, or utilize simple questions to jog the memory. The novice teacher recognizes students’ logic but does not incorporate them into his/her teaching. In this case, the teacher becomes the sole judge for the appropriateness of the answers and the typical dialogue in the classroom occurs in a way that the teacher asks a question, students answer, and the teacher comments.  相似文献   

3.
The research outlined in this paper investigated how student teachers perceived the development of their knowledge and attitudes towards physics through video recorded practical workshops based on experiments and subsequent group discussions. During an 8-week physics course, 40 primary science student teachers worked in groups of 13–14 on practical experiments and problem-solving skills in physics. The student teachers were video recorded in order to follow their activities and discussions during the experiments. In connection with every workshop, the student teachers participated in a seminar conducted by their physics teachers and a primary science teacher; they watched the video recording in order to reflect on their activities and how they communicated their conceptions in their group. After the 8 weeks of coursework a questionnaire including a storyline was used to elicit the student teachers’ perceptions of their development of subject matter knowledge from the beginning to the end of the course. Finally, five participants were interviewed after the course. The results provided insight into how aspects such as self-confidence and the meaningfulness of knowledge for primary teaching were perceived as important factors for the primary science student teachers’ development of subject matter knowledge as well as a positive attitude towards physics.  相似文献   

4.
This paper reports on an investigation into Hong Kong students' comprehension of English non-technical words used in science. The investigation was conducted in a context in which English, a foreign language to students, is the medium of instruction, in that textbooks and examinations are all in English but the classroom language used is mainly Chinese, with frequent Chinese-English code-switching. A total of 4644 Secondary 4, 5 and 6 students participated in the study. Many students did not correctly comprehend a large proportion of the words, confused them with words that were graphologically or phonetically similar, and even took them for their antonyms. Such poor performance raises doubts as to whether the majority of Hong Kong students have attained a ‘threshold level’ of competence in English to benefit from learning science in English. Specializations: physics education, students' alternative conceptions in science, conceptual change, computer-assisted learning in physics.  相似文献   

5.
Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students’ conceptions of electromagnetism, to investigate to what extent the results from the present study are similar to these results from other studies, and to uncover any new forms of alternative conceptions. Data for this study came from 15 in-depth interviews. Three previously unreported alternative conceptions were identified in the study: 1) induced current varies proportionately with current in solenoid; 2) there must be contact between magnetic flux and the external coil in order for any emf to be induced in the coil; 3) coulombic or electrostatic potential difference is present in an induced electric field. These alternative conceptions were manifested in these students’ explanations of electromagnetic phenomena presented to them during the interviews.  相似文献   

6.
In the present study we attempt to incorporate the philosophical dialogue about physical reality into the instructional process of quantum mechanics. Taking into account that both scientific realism and constructivism represent, on the basis of a rather broad spectrum, prevalent philosophical currents in the domain of science education, the compatibility of their essential commitments is examined against the conceptual structure of quantum theory. It is argued in this respect that the objects of science do not simply constitute ‘personal constructions’ of the human mind for interpreting nature, as individualist constructivist consider, neither do they form products of a ‘social construction’, as sociological constructivist assume; on the contrary, they reflect objective structural aspects of the physical world. A realist interpretation of quantum mechanics, we suggest, is not only possible but also necessary for revealing the inner meaning of the theory’s scientific content. It is pointed out, however, that a viable realist interpretation of quantum theory requires the abandonment or radical revision of the classical conception of physical reality and its traditional metaphysical presuppositions. To this end, we put forward an alternative to traditional realism interpretative scheme, that is in harmony with the findings of present-day quantum theory, and which, if adequately introduced into the instructional process of contemporary physics, is expected to promote the conceptual reconstruction of learners towards an appropriate view of nature.  相似文献   

7.
This paper reports on an investigation of the effect of conceptual change pedagogy on students’ conceptions of ‘rate of reaction’ concepts. The study used a pre-test/post-test non-equivalent comparison group design approach and the sample consisted of 72 Turkish grade-11 students (aged 16–18 years) selected from two intact classrooms. The ‘Rate of Reaction’ Concept Test comprising 9 lead and 10 sub-questions (total 19 items) was employed. The results suggest that the teaching intervention helped the students to overcome their alternative conceptions and to store their newly structured knowledge in their long-term memories. It is suggested that combining different conceptual change methods such conceptual change text/refutation text, argumentation with the intervention used here may be more effective in reducing student alternative conceptions.  相似文献   

8.
The objective of this study was to construct a teaching strategy for facilitating students’ conceptual understanding of the boiling concept. The study is based on 52 freshman students in the primary science education department. Students’ ideas were elicited by a test consisting of nine questions. Conceptual change strategy was designed based on students’ alternative conceptions. Conceptual change in students’ understanding of boiling was evaluated by administering a pre-, post- and delayed post-test. The test scores were analysed both by qualitative and quantitative methods. Statistical analysis using one-way ANOVA of student test scores pointed to statistically significant differences in the tests and total scores (p < 0.05). Quantitative analysis of students’ responses on each test revealed different schema about changing their knowledge system. Both qualitative and quantitative analyses suggest that the teaching activities facilitated students’ conceptual understanding. No statistically significant differences were found between post-test and delayed post-test scores, suggesting that the teaching strategy enabled students to retain their new conceptions in the long-term memory.  相似文献   

9.
The purpose of this study is to assess students’ conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey (CLASS), multiple-choice test was administered as a pre- and posttest with Solomon 4 group design to students (N  =  138) enrolled on freshman level physics course. The number of chapter taught to the students was 14. Problem-solving strategy steps were asked to students in the exam. The analyses of CSEM showed that the treatment group (g  =  0.62) obtained significantly higher conceptual learning gain than the control group (g  =  0.36). The conceptual understanding and problem-solving skills of the students on magnetism considerably enhanced when PI was conducted (37% and 20%, respectively). CLASS results for 5 subscales (conceptual understanding, applied conceptual understanding, problem solving general, problem solving confidence, and problem solving sophistication) supported the findings of CSEM.  相似文献   

10.
The effects of two types of two well-established microcomputer-based teaching methods were examined for their effect teaching high school students kinetics. The use of data acquisition probeware and digital video analysis were studied for their impact on students’conceptions and ability to interpret graphical relationships to real world events. The abilities of high school physics students to accurately graph kinetics using distance, velocity and acceleration in one dimensional motion varied between and among the groups. Using a split category random assignment analysis students investigated these motions with both. In a quasi experimental fashion students received similar instruction on each but in a different sequence. Students received the similar teaching in reverse order and both strategies were found to be successful and complementary. There were indications student achievement was higher for velocity–time and acceleration-time graphs using the digital video analysis method. Implications for this study on teaching tools, methodologies, curriculum development, program implementation, and assessment are discussed.  相似文献   

11.
This research study aims to examine the effectiveness of a problem-based learning (PBL) on 9th grade students’ understanding of intermolecular forces (dipole–dipole forces, London dispersion forces and hydrogen bonding). The student’s alternate conceptions about intermolecular bonding and their beliefs about PBL were also measured. Seventy-eight 9th grade students were stratified by cognitive levels and then randomly assigned to experimental (PBL, 40 students) and control (lecture-style teaching, 38 students) groups. Following a preparatory lesson where activation and remediation of existing knowledge occur, a pre-test was given, and no significant difference was found between the two groups of students (p > .05). After the instruction was completed, a post-test and also a questionnaire related to the quality of the problem, the teacher’s role and group functioning were administered. Results from the post-test of both groups (p < .05) and questionnaire showed that PBL is affective on students’ achievement, remedying formation of alternate conceptions and also social skills.  相似文献   

12.
The research reported in this case study explores the understanding of stoichiometry and related concepts of Thai science students in grades 10 and 11 after major national curriculum reforms. Students’ conceptions and alternative conceptions were investigated using a questionnaire - the Stoichiometry Concept Questionnaire (SCQ) (N = 97), which consists of 16 multiple-choice items, the choices for which respondents are required to provide reasons. The findings suggest that less than half of the students surveyed hold what is considered by a panel of experts to be a scientifically acceptable understanding for the conceptions investigated. The main student alternative conceptions are that one mole of all substances has a volume of 22.4 L at STP, that a solution that contains a greater mass of solute has the higher molar concentration, and that the limiting reagent is the reagent for which the lowest mass of reactant is present. Examination of students’ reasons suggests that they resort to the use of algorithms with little understanding of the underlying concepts. It thus seems the national educational reforms have not resulted in a sound understanding of some science concepts. It is recommended that curriculum developers should specify a need for conceptual understanding along with capability in numerical problem-solving in their learning objectives, and link this to assessment regimes that reward conceptual understanding. A need for on-going professional development seems essential if the intentions of the Thai curriculum reforms are to be realized.  相似文献   

13.
Educational researchers have suggested that computer games have a profound influence on students’ motivation, knowledge construction, and learning performance, but little empirical research has targeted preschoolers. Thus, the purpose of the present study was to investigate the effects of implementing a computer game that integrates the prediction-observation-explanation (POE) strategy (White and Gunstone in Probing understanding. Routledge, New York, 1992) on facilitating preschoolers’ acquisition of scientific concepts regarding light and shadow. The children’s alternative conceptions were explored as well. Fifty participants were randomly assigned into either an experimental group that played a computer game integrating the POE model or a control group that played a non-POE computer game. By assessing the students’ conceptual understanding through interviews, this study revealed that the students in the experimental group significantly outperformed their counterparts in the concepts regarding “shadow formation in daylight” and “shadow orientation.” However, children in both groups, after playing the games, still expressed some alternative conceptions such as “Shadows always appear behind a person” and “Shadows should be on the same side as the sun.”  相似文献   

14.
This work investigates the presence of Thought Experiments (TEs) which refer to the theory of relativity and to quantum mechanics in physics textbooks and in books popularizing physics theories. A further point of investigation is whether TEs – as presented in popular physics books – can be used as an introduction to familiarize secondary school students with physics theories of the 20th century. The study of textbooks and popular physics books showed that authors of both types of books consider TEs as an important tool when presenting the theory of relativity and quantum mechanics. Furthermore, a qualitative research conducted in secondary education revealed that the historical TEs which were transformed into forms accessible to the public could trigger students’ interest and act as educational material to familiarize them with concepts and principles of the 20th century physics.  相似文献   

15.
This study contributes to research that characterises the affective learning that is evoked and taken on by students in response to their perceptions of their contextual learning environments. Interview-discussions were held with lecturers of both introductory and higher-level physics courses (n = 3) concerning how they formulated their patterns of teaching in terms of a particular conceptual framing that they considered to best optimize making learning possible. Subsequently their students (n = 212) were asked with written questions, and some select follow-up interview-discussions, to describe what they expected from ‘a good physics lecturer’. The relationships between these two things—the lecturer’s crafting of practice and the students’ expectations of quality teaching—were investigated. Results show that students’ expectations tend to match their lecturers’ practice, indicating that students are strongly influenced by a contextually based appreciation of ‘good’ teaching.  相似文献   

16.
The purpose of this study is to understand in what ways a technology-enhanced learning (TEL) environment supports learning about the causes of the seasons. The environment was designed to engage students in five cognitive phases: Contextualisation, Sense making, Exploration, Modeling, and Application. Seventy-five high school students participated in this study and multiple sources of data were collected to investigate students’ conceptual understandings and the interactions between the design of the environment and students’ alternative conceptions. The findings show that the number of alternative conceptions held by students were reduced except for the incorrect concepts of “the length of sunshine” and “the distance between the sun and the earth.” The percentage of partial explanations held by students was also reduced from 60.5 to 55.3% and the percentage of students holding complete scientific explanations after using Lesson Seasons rose from 2.6 to 15.8%. While some students succeeded in modeling their science concepts closely to the expert’s concepts, some failed to do so after the invention. The unsuccessful students could not remediate their alternative conceptions without explicit guidance and scaffolding. Future research can then be focused on understanding how to provide proper scaffoldings for removing some alternative concepts which are highly resistant to change.
Fu-Kwun HwangEmail:
  相似文献   

17.
The research presented in this paper consisted of an investigation of the effectiveness of a four-step constructivist-based teaching activity on student understanding of how pressure and temperature influence the dissolution of a gas in a liquid. Some 44 Grade 9 students (18 boys and 26 girls) selected purposively from two school classes in the city of Trabzon, Turkey participated in the study. Students’ understanding were evaluated from examination of two items from a purpose-designed solution concept test, face-to-face semi-structured interviews and examination of students’ self-assessment exercises. Statistical analysis using two-way ANOVA of student test scores point to statistically-significant differences in test and total scores (p < 0.05) suggesting that the teaching activities employed help students achieve better conceptual understanding. Further, no statistically significant differences were seen between post-test and delayed test scores, suggesting that teaching the activities enable students to retain their new conceptions in their long-term memory. However, in a few instances the activities resulted in the development of new alternative conceptions, suggesting teachers need to be conscious of the positive and negative effects of any teaching intervention.  相似文献   

18.
Interactivity, group learning and student engagement are accepted as key features of social constructivist learning theories. The challenge is to understand the interplay between such features in different learning environments. This study focused on the qualitative differences between two interventions—small-groups and whole-class discussions. In both interventions, three short video slices on the abstract topic ‘the physics of superconductivity’ were interspersed with the different discussion styles. The video slices are based on the Bruner stages. Twenty-nine first year university physics students completed a pre-test, underwent the intervention and completed a post-test. The remainder of the data were collected from student drawings, video recordings, observer notes and facilitator feedback. Results indicate that the use of the video slices in both interventions were successful in changing students’ understandings of superconductivity. However, the small groups treatment tended to facilitate questioning, meaning-making and subsequent changes of ideas more so than the whole class discussions. Implications for research and practice are discussed.  相似文献   

19.
Pospiech  Gesche 《Science & Education》2003,12(5-6):559-571
Research in physics has its impact on world view; physics influences the image of nature. On the other hand philosophy thinks about nature and the role of man. The insight that philosophy might indicate the frontiers of human possibilities of thought makes it highly desirable to teach these aspects in physics education. One of the most exciting examples is quantum theory which v. Weizsäcker called a fundamental philosophical advance. I give some hints to implementing philosophical aspects into a course on quantum theory. For this purpose I designed a dialogue between three philosophers – from the Antique, the Enlightenment and a quantum philosopher – discussing results of quantum theory on the background of important philosophical terms. Especially the views of Aristotle are reviewed. This idea has been carried out in a supplementary course on quantum theory for interested teacher students and for in-service training of teachers.  相似文献   

20.
This study investigated the effect of metaconceptual teaching interventions on students’ understanding of force and motion concepts. A multimethod research design including quasi-experimental design and case study designs was employed to compare the effect of the metaconceptual activities and traditional instruction and investigate students’ reactions to metaconceptual teaching interventions. The participants (45 high school students in the USA) were enrolled in one of the two physics classes instructed by the same science teacher. In the experimental group, students’ engagement in metaconceptual knowledge and processes was facilitated through various instructional activities, including poster drawing, journal writing, group debate, concept mapping, and class and group discussions. These activities were intended to facilitate students’ engagement in (a) becoming aware of their existing and past conceptions, associated beliefs, everyday experiences, and contextual differences, (b) monitoring their understanding of the new conception, the changes in ideas, and the consistency between existing and new conceptions, and (c) evaluating the relative ability of competing conceptions to explain a physical phenomenon. In the comparison group, the same content knowledge was explained by the teacher along with the use of laboratory experiments, demonstrations, and quantitative problem solving. Students’ reactions to the designed instructional activities indicated that metaconceptual teaching interventions were successful in facilitating students’ engagement in several types of metaconceptual functioning. The results showed that students in the experimental group had significantly better conceptual understanding than their counterparts in the comparison group and this positive impact remained after a period of 9 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号