首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
ABSTRACT

This article describes an early childhood teacher-preparation program that infuses environmental education and nature experiences into courses, practicum, and student-teaching experiences. Program philosophy, pedagogy, materials, and methods are described and linked to the Early Childhood Environmental Education Programs: Guidelines for Excellence, the Guidelines for the Preparation and Professional Development of Environmental Educators, and state-level early learning guidelines that focus on connecting young children with nature. Preservice teachers build knowledge, skills, and dispositions for effective environmental education beginning from an awareness level and progressing to application and refinement. The value of nature is communicated explicitly and implicitly throughout the program. Preliminary analysis of student outcomes indicated that, over the course of the program, students’ ratings of the importance of nature and science experiences and outcomes increased, along with their confidence implementing environmental-education activities.  相似文献   

2.
This article reviews the significance of the contributions of Ernst von Glasersfeld to research in science education, especially through his theoretical contributions on radical constructivism. As a field shaper, Glasersfeld’s subversive ideas catalyzed debate in the science education community and fuelled transformation of many facets including research methods, ways of thinking about teaching and learning, curriculum, and science teacher education. Perturbations emanating from the debates on constructivism forged new pathways that led to the development and use of many of the sociocultural frameworks employed by authors in Cultural Studies of Science Education.
Kenneth TobinEmail:

Kenneth Tobin   is Presidential Professor of Urban Education at the Graduate Center of City College. In 2004 Tobin was recognized by the National Science Foundation as a Distinguished Teaching Scholar and by the Association for the Education of Teachers of Science as Outstanding Science Teacher Educator of the Year. Prior to commencing a career as a teacher educator, Tobin taught high school science and mathematics in Australia and was involved in curriculum design. His research interests are focused on the teaching and learning of science in urban schools, which involve mainly African American students living in conditions of poverty. A parallel program of research focuses on coteaching as a way of learning to teach in urban high schools. Recently Tobin published a book with Wolff-Michael Roth entitled Teaching to learn: A view from the field and edited two volumes entitled The culture of science education: Its history in person and Science, learning, and identity: Sociocultural and cultural-historical perspectives. In 2006 Tobin edited Teaching and learning science: A handbook.  相似文献   

3.
This ethnographic study of a third grade classroom examined elementary school science learning as a sociocultural accomplishment. The research focused on how a teacher helped his students acquire psychological tools for learning to think and engage in scientific practices as locally defined. Analyses of classroom discourse examined both how the teacher used mediational strategies to frame disciplinary knowledge in science as well as how students internalized and appropriated ways of knowing in science. The study documented and analyzed how students came to appropriate scientific knowledge as their own in an ongoing manner tied to their identities as student scientists. Implications for sociocultural theory in science education research are discussed. John Reveles is an assistant professor in the Elementary Education Department at California State University, Northridge. He received his Ph.D. from the University of California, Santa Barbara in 2005. Before pursuing his Ph.D., he worked as a bilingual elementary school teacher for 3 years. His research focuses on the development of scientific literacy in elementary school settings; sociocultural influences on students' academic identity; equity of access issues in science education; qualitative and quantitative research methods. Within the Michael D. Eisner College of Education, he teaches elementary science curriculum methods courses, graduate science education seminars, and graduate research courses. Gregory Kelly is a professor of science education at Penn State University. He is a former Peace Corps Volunteer and physics teacher. He received his Ph.D. from Cornell in 1994. His research focuses on classroom discourse, epistemology, and science learning. This work has been supported by grants from Spencer Foundation, National Science Foundation, and the National Academy of Education. He teaches courses concerning the uses of history, philosophy, sociology of science in science teaching and teaching and learning science in secondary schools. He is editor of the journal Science Education. Richard Durán is a Professor in the Gevirtz Graduate School of Education, University of California, Santa Barbara. His research and publications have been in the areas of literacy and assessment of English Language Learners and Latino students. He has also conducted research on after school computer clubs, technology and learning as part of the international UC Links Network. With support from the Kellogg Foundation, he is implementing and investigating community and family-centered intervention programs serving the educational progress of Latino students in the middle and high school grades.  相似文献   

4.

A qualitative study was conducted to understand how middle and high school students with visual impairments (VI) engage in Science, Technology, Engineering and Mathematics (STEM). The Readiness Academy, a Project-Based Learning (PBL) intervention, was designed to provide a week-long, immersive, outdoor, and inquiry-based science education program to students with VI. We analyzed 187 photographs, camp associate intern notes, and researcher memos first using emotion coding, followed by process coding to structure initial codes and categories into seven research activities. We used axial coding as a secondary cycle coding method to determine four consistent themes across all research activities: apprenticeship, collaboration, accessibility, and independence. We found that the inclusion of purposeful accessibility, such as assistive technology and multisensory experiences, supported how students with VI engaged in STEM education. The findings reflect how students dynamically fulfilled roles as apprentices, collaborative members, and independent researchers within the program’s context of PBL and outdoor science education.

  相似文献   

5.
Background: Problem-based learning (PBL) is a teaching approach working in cooperation with self-learning and involving research to solve real problems. The first law of thermodynamics states that energy can neither be created nor destroyed, but that energy is conserved. Students had difficulty learning or misconceptions about this law. This study is related to the teaching of the first law of thermodynamics within a PBL environment.

Purpose: This study examined the effectiveness of PBL on candidate science teachers’ understanding of the first law of thermodynamics and their science process skills. This study also examined their opinions about PBL.

Sample: The sample consists of 48 third-grade university students from the Department of Science Education in one of the public universities in Turkey.

Design and methods: A one-group pretest–posttest experimental design was used. Data collection tools included the Achievement Test, Science Process Skill Test, Constructivist Learning Environment Survey and an interview with open-ended questions. Paired samples t-test was conducted to examine differences in pre/post tests.

Results: The PBL approach has a positive effect on the students’ learning abilities and science process skills. The students thought that the PBL environment supports effective and permanent learning, and self-learning planning skills. On the other hand, some students think that the limited time and unfamiliarity of the approach impede learning.

Conclusions: The PBL is an active learning approach supporting students in the process of learning. But there are still many practical disadvantages that could reduce the effectiveness of the PBL. To prevent the alienation of the students, simple PBL activities should be applied from the primary school level. In order to overcome time limitations, education researchers should examine short-term and effective PBL activities.  相似文献   

6.
George Sarton had a strong influence on modern history of science. The method he pursued throughout his life was the method he had discovered in Ernst Mach’s Mechanics when he was a student in Ghent. Sarton was in fact throughout his life implementing a research program inspired by the epistemology of Mach. Sarton in turn inspired many others (James Conant, Thomas Kuhn, Gerald Holton, etc.). What were the origins of these ideas in Mach and what can this origin tell us about the history of science and science education nowadays? Which ideas proved to be successful and which ones need to be improved upon? The following article will elaborate the epistemological questions, which Darwin’s “Origin” raised concerning human knowledge and scientific knowledge and which led Mach to adapt the concept of what is “empirical” in contrast to metaphysical a priori assumptions a second time after Galileo. On this basis Sarton proposed “genesis and development” as the major goal of Isis. Mach had elaborated this epistemology in La Connaissance et l’Erreur (Knowledge and Error), which Sarton read in 1913 (Hiebert 1905/1976; de Mey 1984). Accordingly for Sarton, history becomes not only a subject of science, but a method of science education. Culture—and science as part of culture—is a result of a genetic process. History of science shapes and is shaped by science and science education in a reciprocal process. Its epistemology needs to be adapted to scientific facts and the philosophy of science. Sarton was well aware of the need to develop the history of science and the philosophy of science along the lines of this reciprocal process. It was a very fruitful basis, but a specific part of it, Sarton did not elaborate further, namely the psychology of science education. This proved to be a crucial missing element for all of science education in Sarton’s succession, especially in the US. Looking again at the origins of the central questions in the thinking of Mach, which provided the basis and gave rise to Sarton’s research program, will help in resolving current epistemic and methodological difficulties, contradictions and impasses in science education influenced by Sarton. The difficulties in science education will prevail as long as the omissions from their Machian origins are not systematically recovered and reintegrated.  相似文献   

7.
The aim of this study was to compare the achievement of prospective primary science teachers in a problem-based curriculum with those in a conventional primary science teacher preparation program with regard to success in learning about gases and developing positive attitudes towards chemistry. The subjects of the study were 101 first year undergraduate students, who were in two different classes and who were taught by the same lecturer. One of the classes was randomly selected as the intervention group in which problem-based learning (PBL) was used, and the other as the control in which conventional teaching methods were used. The data were obtained through use of the gases diagnostic test (GDT), the chemistry attitude scale (CAS), and scales specific to students’ evaluation of PBL such as the peer evaluation scale (PES), self evaluation scale (SES), tutor’s performance evaluation scale (TPES) and students’ evaluation of PBL scale (SEPBLS). Data were analysed using SPSS 10.0 (Statistical Package for Social Sciences). In order to find out the effect of the intervention (PBL) on students’ learning of gases, independent sample t-tests and ANCOVA (analysis of co-variance) were used. The results obtained from the study showed that there was a statistically significant difference between the experimental and control groups in terms of students’ GDT total mean scores and, their attitude towards chemistry, as well as PBL has a significant effect on the development of students’ skills such as self-directed learning, cooperative learning and critical thinking.  相似文献   

8.
This longitudinal study of middle school science teachers explored the relationship between effective science instruction, as defined by the National Science Education Standards (NRC in National science education standards. National Academy Press, Washington, DC, 1996), and student achievement in science. Eleven teachers participated in a three year study of teacher effectiveness, determined by the LSC Classroom Observation Protocol (Horizon Research, Inc. in Local Systemic Change Classroom Observation Protocol. May 1, 2002) and student achievement, which was assessed using the Discovery Inquiry Test in Science. Findings in this study revealed the positive impact that effective science teachers have on student learning, eliminating achievement gaps between White and Non-White students. Case studies of three teachers, both effective and ineffective explore the beliefs and experiences that influence teachers to change, or not to change practice. This study provides justification for teaching science effectively to narrow achievement gaps in science and provides insight to stakeholders in science education as to how to support teachers in becoming more effective, through addressing existing teacher beliefs and providing experiences that challenge those beliefs.  相似文献   

9.
There have been substantial reform efforts in science education to improve students’ understandings of science and its processes and provide continual support for students becoming scientifically literate (American Association for the Advancement of Science in Benchmarks for science literacy, Oxford University Press, New York, 1993; National Research Council in Mathematics and science education around the world, National Academy Press, Washington DC, 1996; National Science Teachers Association in NSTA position statement 2000). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson V, Volrich M (2006) Journal of Research and Science Teaching, 43, 377–394). The purpose of this study was to explore how explicit-reflective instruction could improve young students’ understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.  相似文献   

10.
Despite the potential environmental impact of urban planning, there is little research on Environmental Education (EE) in the context of urban planning curricula. This study follows graduate planning students’ learning experience during group projects assigned as part of a planning course at the Technion – Israel Institute of Technology. These participatory projects, characterized as project-based learning and service learning, took place in several communities in Israel. We examined the types of learning impacts the projects engendered by analyzing the reported experiences of the students using parameters from the field of EE. The main goal of this research is to understand the contribution of such practical, hands-on project exercises to the course curriculum for inculcating environmental education themes. Findings indicate that projects helped students acquire and/or improve professional tools. They enhanced motivation to consider environmental concerns in their work and in some cases changed students’ personal environmental behavior.  相似文献   

11.
12.
The following study aims to explore whether a video- and problem-based learning (PBL) environment can be improved using cognitive tools. Our hypothesis is that direct instructions in a PBL setting enhance pre-service teachers’ learning outcomes in classroom management. To answer this research question, we implemented a pre-post-design within which we assigned 237 master students to two learning environments: Classic problem-based learning (PBL), where students acquired central theoretical concepts and empirical findings on dealing with disruptions in groups (n = 113) or instructed problem-based learning (I-PBL), where students received extensive theoretical instructions (n = 124) during the first two seminar sessions. In the framework of a longitudinal self-report assessment we found that (1) teacher self-efficacy in the subscales “student engagement”, “instruction” and “classroom management competencies” increased in students of both groups. The highest increase was found in classroom management competencies. (2) In the evaluation with an objective measure students participating in the I?PBL group showed greater knowledge than students in the PBL group (multiple-choice test), and (3) regarding motivational processes students in the PBL group reported a higher degree of identification than students in the I?PBL group.  相似文献   

13.
Our paper presents an in-service primary school teachers’ training program which is based on the idea that the history of science can play a vital role in promoting the learning of physics. This training program has been developed in the context of Comenius 2.1 which is a European Union program. This program that we have developed in the University of Athens is based on socioconstructivist and sociocultural learning principles with the intention of helping teachers to appropriate the basic knowledge on the issue of falling bodies. Moreover, it has the aim to make explicit through the exploitation of authentic historical science events, on the above topic (Aristotle’s, Galileo’s and Newton’s theories on falling bodies) the Nature of Science (NoS), the Nature of Learning (NoL) and the Nature of Teaching (NoT). During the implementation of the program we have used a variety of teaching strategies (e.g. group work, making of posters, making of concept maps, simulations) that utilize historical scientific materials on the issue of falling bodies.
Panos KokkotasEmail:

Panos Kokkotas   is professor at the Pedagogical Department of University of Athens. He teaches Science Education, Multimedia (audio, visual etc.) teaching tools and Museum Education to both initial and in-service teachers. He is also coordinator of the Comenius 2.1 projects entitled (i) “The MAP project” (two years duration—2004–2006) and (ii) “The STeT project (Science Teacher e-Training) (2006–2008). He has α degree in Physics from the University of Athens. His Ph.D. is on science education from the University of Wales. He has taught science in high school, he has been a school consultant for science teachers. He has mainly published in science education. His recent books include Science Education I (Athens, 2000), Science Education IIThe constructivist approach to teaching and learning science (Athens, 2002). Additionally he has edited Teaching Approaches to Science Education (Athens, 2000); as wells as he has edited the Greek translations of the book: Words, Science and Learning by Clive Sutton, (Athens, 2002) and also of the book Making Sense of Secondary Science by Driver et al. (Athens, 2000). He is also writer of the following science textbooks: (1) Science textbook for 5th grade of primary school based on constructivism, (2) Science textbook for 6th grade of primary school based on constructivism, Physics Textbooks for students of Upper Secondary Schools as follows: (3) Physics textbook for 16 years old, (4) Physics textbook for 17 years old student, (5) Physics textbook for 18 years old student. He is the Foundation president of the “The Hellenic Union for Science Education (EDIFE)”. Till now the Union has organized two large Conferences with international participation and also many small conferences in Greece. The 2nd Conference of EDIFE organized together with the 2nd IOSTE Symposium in Southern Europe. He is Foundation Editor of the Greek journal: Science Education: Research & Practice. This year he is responsible for the organisation of the 7th International Conference on History of Science in Science Education (Workshop of Experts), having as theme “Adapting Historical Knowledge Production to the Classroom” from Monday July 7th to Friday July 11th, 2008 in Athens. Panagiotis Piliouras   is a Ph.D. holder and in 1984 he got his degree in primary education and in 1993 he got his degree in Mathematics. He attended postgraduate studies (M.Sc.) in Science Education at the Pedagogical Department of Primary Education at the University of Athens. From 1985 until 1998 he taught in a primary school. Since 1999 he has been working in the Pedagogical Department of Primary Education at the University of Athens. His current work involves laboratory teaching, in-service teacher-training and design and development educational material and educational multimedia. His research interest is focused on teaching science in a collaborative inquiry mode, social interaction in learning and instruction, methodological questions in the analysis of social activity, sociocultural perspectives to learning and development, and applications of the educational technology. Katerina Malamitsa   is a Ph.D. holder from Pedagogical Department of Primary Education at the National University of Athens in the field of “Critical Thinking and Science Education in Primary School”. She got her Bachelor’s Degree as a Teacher in Primary Education in 1984. From 1986 until 1999 she taught in primary schools of Greece. In 2002 she got her Master’s Degree in “Science Education” at the Pedagogical Department of Primary Education at the National University of Athens. From 2006 till now she is a director in a Greek Primary School in Athens. She has participated in national and international conferences in topics concerning Science Education and teaching. She has published papers in Greek scientific journals. She is author of the Science textbooks which are used in the 3rd & 4th grades of Greek Primary School in national level (after evaluation from a scientific committee). Recently she has translated and standardized the “Test of Everyday Reasoning (TER)” & “The California Measure of Mental Motivation (CM3)” (levels 2&3) for the Greek population [Insight Assessment/California Academic Press LLC, 217 La Cruz Avenue, Millbrae, CA 94030, ]. Her main research interests focus on the critical thinking, the Science Education in Primary School, the use of aspects of History of Science in Teaching Science, the teacher training and education, the reflective teacher, the professional development of teachers etc. Efthymios Stamoulis   is a PhD Student in the Pedagogical Department of Primary Education at the University of Ioannina. His current work involves laboratory teaching, in-service teacher-training and design and development educational material and educational multimedia. He is a director in primary school in Athens, Greece.  相似文献   

14.
The four standards for professional development of teachers of science from the National Science Education Standards (NRC, 1996) provided a frame for reflection upon ways in which prospective teachers engaged in research in my courses on methods of teaching science. Students learned both science content and science pedagogy by inquiry. An extended research project helped students to integrate knowledge of science, learning, pedagogy, and students, and to apply that to teaching science. Students built knowledge, skills, and attitudes for lifelong learning by participating in a research festival and presenting at conferences. I designed this science-teaching methods course in the context of a teacher education program that is attempting to implement reform approaches to instruction. © 1998 John Wiley & Sons, Inc. J Res Sci Teach 35: 791–809, 1998.  相似文献   

15.
The present study aims to analyse the complex relationships between the relevant constructs of students’ demographic background, perceptions, learning patterns and (proxy measures of) learning outcomes in order to delineate the possible direct, indirect, or spurious effects among them. The analytical methodology is substantively framed against the studies of Richardson (British Journal of Educational Psychology 76:867–893, 2006, Higher Education 54:385–416, 2007) that utilised a regression-based methodology to infer the possible causal relationships among the relevant learning constructs. A composite research instrument, written in Chinese and derived from the Inventory of Learning Styles (ILS) and the Course Experience Questionnaire (CEQ), was used to collect students’ feedback on their perceptions of the learning environment and their learning patterns. Valid responses were obtained from 1,572 students studying at six institutions in the post-secondary education sector in Hong Kong, a new response-context for both the CEQ and the ILS. In adapting the research instruments to a new Chinese response-context, the findings are generally consistent with those reported in other published works (e.g. no relationship between students’ demographic background and their satisfaction with the programme, and a significant relationship between students’ exhibition of undirected learning patterns and low expected performance), but there are also some noteworthy discrepancies. The findings therefore buttress the confidence with which an ILS-based General Theoretical Model of student learning, adapted from Richardson (British Journal of Educational Psychology 76:867–893, 2006, Higher Education 54:385–416, 2007), may be used to conceptualise and interpret the dynamics of variation across different cultural response-contexts. While the CEQ provides some valuable complementary insights, it is an instrument that requires further development in the response-context of the present study.  相似文献   

16.
Abstract

Current literature related to science instruction often includes a discussion of the philosophy of constructivism. The authors describe four main components of a constructivist science lesson or unit. A review of commonly used environmental education materials was conducted to look for these components. Parallels between teaching strategies used in environmental education and constructivist methods are discussed.  相似文献   

17.
Abstract

Environmental education (EE) scholars view intergenerational learning as a means to influence adult understandings of and relationships with the environment. Yet EE researchers have studied intergenerational learning in a limited fashion, with no emphasis on its role in higher education. The purpose of this article is to use feminist posthumanist theories to broadly explore intergenerational learning in critical food studies courses taught at the university level. We rely primarily on student coursework and post-course interviews as data sources that convey student perceptions of interactions with their families and the natural world, demonstrating how students develop relational identities shaped by personal experience as well as experiences in the course. To conclude, we discuss both the limitations and implications of this research for the field of EE.  相似文献   

18.
Abstract

Finland's Ministry of Education sponsored the development of an environmental education (EE) course for practicing educators of teachers. One to 3 persons from each teacher training unit at various universities and training schools attended a tutor training session, during which a course for other teacher trainers was developed. The course focused on personal development and curriculum development. Tutors used distance education with some locally arranged contact teaching to teach the course. Tutors also led local study groups. Teacher trainers who attended the course learned and applied new teaching practices and produced new model lessons. They also reflected on their personal environmental philosophy and gained in environmental knowledge. Preliminary evaluation of the program indicated that high-quality learning experiences occurred. This 2-step distance education model could be used for large-scale implementation of EE for in-service teacher training.  相似文献   

19.
Mansoor Niaz 《Interchange》2004,35(2):155-184
The objective of this study is to provide in-service teachers an opportunity to become familiar with the controversial nature of progress in science (growth of knowledge) and its implications for research methodology in education. The study is based on 41 participants who had registered for a nine-week course on Methodology of Investigation in Education, as part of their Master’s degree program. The course is based on 20 readings drawing upon a history and philosophy of science perspective (positivism, constructivism, Popper, Kuhn, Lakatos) and its implications for educational research. Course activities included written reports, class room discussions based on participants’ presentations, and written exams. Based on the results obtained it was concluded that: (a) participants were able to understand the basic ideas of constructivist philosophy and its pedagogical implications; (b) the role of behavioural objectives in actual educational practice was questioned; (c) integration of qualitative and quantitative research methods was considered to be an alternative to the current debate about the replacement of one method by the other; (d) participants considered the dilemma of evaluating students based on what they have learned or what they should have learned, within the social constructivist framework and generally favoured the former; and (e) most of the participants were reluctant to accept constructivism as a form of positivism, a controversial thesis that is gaining support in the research literature. Given the importance of alternative approaches to growth and meaning of knowledge, it is important that teachers be aware of conflicting situations in the classroom that refer to: objectivity, scientific method, qualitative-quantitative methods, relationship between method and problem, evaluation, and a critical appreciation of constructivism.  相似文献   

20.
There have been substantial reform efforts in science education to improve students’ understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, Benchmarks for science literacy, Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA, NSTA position statement: The nature of science, , 2000). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson and Volrich, J Res Sci Teach 43:377–394, 2006). The purpose of this study was to explore how explicit-reflective instruction could improve young students’ understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号