首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如果定义T_(△HKG)=S_(△KHG),当△KHG 与△ABC 有公共内点,—S_(△KHG),当△KHG 与△ABG 无公共内点,则有如下定理:定理3 设点 O 与△ABC 共面,则T_(△BOC)+T(△AOC)+T_(△AOB)=0, (15)且 T_(△BOC)+T_(△AOC)+T_(△AOB)=S_(△ABC). (16)证明:按点 O 所在的位置讨论如下:(Ⅰ)当点 O 在△ABC 的内部或边界上时,△ABC 被分割为△BOC,△AOC 和△AOB(当 O 在边界上时,当中有的是退化三角形),所以有T_(△BOC)=S_(△BOC),T_(△AOC)=S_(△AOC),T_(△AOB)=S_(△AOB),且其和等于 S_(△ABC),即得(16)式,且根据定理2的结论1,得  相似文献   

2.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

3.
276.设P是正△ABC内一点,分别作P关于直线AB、BC、CA的对称点C_1、A_1、B_1,并设△ABC、△A_1B_1C_1的面积分别为S、S′,试证:S′≤S。证:如图1,设正△ABC的边长为x,P到三边BC、CA、AB的距离分别为a、b、c,△PB_1C_1、△PC_1A_1、△PA_1B_1的面积分别为S_1、S_2、S_3,那么S′=S_1+S_2+S_3,且因∠A_1PB_1=∠B_1PC_1=∠C_1PA_1=120°,所以 S_1=1/2·2b·2c·sin120°=3~(1/2)bc, S_2=3~(1/2)ca,S_3=3~(1/2)ab。因正三角形内任一点到三边的距离之和等于此正三角形的高,即a+b+c=3~(1/2)/2x,于是S′=3~(1/2)(bc+ca+ab)≤3~(1/2)·1/3(a+b+c)~2=3~(1/2)/3·(3~(1/2)/2x)~2=3~(1/2)/4x~2=S。  相似文献   

4.
<正>近日,笔者在给学生解答一些自主招生的题目之余,对有些题目有了进一步的思考,并对结论作了进一步的推广.例1 (2016年清华自主招生题) O为△ABC内一点,若S_(△AOB)∶S_(△BOC)∶S_(△AOC)=4∶3  相似文献   

5.
在2004年全国高中数学联赛的试题中,有一道被广泛关注的选择题:设 O 点在△ABC 的内部,且+2+3=0,则△ABC 的面积与△AOC 的面积的比为( ).A.2 B3/2 C.3 D.5/3不少人对该题进行研究和推广,已公开发表的关于这方面的文章,至少有十多篇.其中,文[1]、文[2]有如下结论:’命题1(文[1]中的定理)设 O 为△ABC 所在平面上的一点,p,q,r 是不同时为0的实数,且 p+q+r=0,①则△AOB、△BOC、△AOC 的面积与△ABC 的面积之比分别为  相似文献   

6.
1 已有推广的呈现对于2004年全国高中数学联赛题中的向量题:设 O 点在△ABC 内部,且有+2+3=0,则△ABC 的面积与△AOC 的面积的比为().A.2 B.3/2 C.3 D.5/3文[1]和文[2]均将其推广,但叙述稍有不同.为行文方便,将其叙述分别摘录如下.文[1]的推广为:设 O 点在△ABC 内部,且有 p·+q·+r·=0(p,q,r∈(0,+∞)),则△ABC 的面积与△AOB、△BOC、△AOC 的面积的比分别为(p+q+r)/r、  相似文献   

7.
例1如图1,设O是等边三角形ABC内一点,∠AOB= 115°,∠AOC=125°,则以OA、OB、OC为边所构成的三角形的各内角的度数各是多少?解如图2,把△AOB绕点A逆时针旋转60°得到△ADC,则AD=AO,∠2=∠1.所以∠2+∠3=∠1+∠3 =∠BAC=60°.  相似文献   

8.
结论如图1,已知D为△ABC边BC上的任一点,O为AD上一点,连结BO、CO.设△BOD、△DOC、△AOC、△AOB的面积分别为S_1、S_2、S_3、S_4.则S_1·S_3=S_2·S_4. 证分别过B、C两点作AD所在直线的垂线BE、CF,垂足为E、F,则有(BD)/(CD)=(BE)/)CF).  相似文献   

9.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等. 证明:如图1,记∠AOB=α,△AOB、△COD△AOD、△BOC的面积分别为S_1、S_2、S_3、S_4,则由三角形面积公式有S_1·S_2=1/2AO·BO·sinα·1/2CO·DO·sinα,S_3·S_4=1/2AO·DO·sin(180°-α)·1/2BO·CO·sin(180°-α)故得,S_1·S_2=S_3·S_4。  相似文献   

10.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等。证明如图1,记∠AOB=a,△AOB、△COD、△AOD和△BOC的面积分别为S_1、S_2、S_3和S_4,则由三角形面积公式,有  相似文献   

11.
1 .(1) 3  △ABD≌△DCA ,△ABC≌△DCB ,△AOB≌△DOC .  (2 )AOB、DOC、AOB、DOC、ABO、DCO或∠BAO =∠CDO   2 .2 0   3.2 ,6 ,2 3.  4 .72 ,10 8   5 .如果∠ 1+∠ 2 =180° ,那么∠ 1与∠ 2互为邻补角 .假   6 .AB=CD ,或BC =DC ,或∠BAC=∠DAC ,或∠ACB =∠ACD .  7. 130 ,70   8. 5 0 ,5 0   9.9   10 . 18,93   11.D   12 .D   13.D   14 .B   15 .B   16 .(1)略   (2 ) 6  提示 :BE+CE=AC =8.  17.2 5 .提示 :△PBC为Rt△ ,在Rt△ABP中 ,∵AB =2 2 ,∴AP =2 ,PC =4 …  相似文献   

12.
四面体是三角形在空间的推广 ,因此三角形的许多性质可以推广到四面体上去 .本文以向量为工具 ,把三角形的余弦定理、勾股定理以及“在直角三角形中 ,30°的角所对的边是斜边的一半”等 4个定理推广到四面体上 .定理 1  (四面体的余弦定理 )四面体C-AOB中 ,若CO垂直于平面AOB ,平面AOC与平面BOC所成的二面角为α ,则四面体的四个面的面积之间有如下关系 :S2△ABC =S2△AOC S2△BOC S2△AOB -2S△AOC·S△BOCcosα证 以O为原点、OA为x轴 ,OC为z轴建立空间直角坐标系 ,设四个顶点的坐标分析为A(a ,0 ,0 ) ,B(b ,d ,0 )…  相似文献   

13.
题 已知O为△ABC的外心,AO或AO的延长线交BC于M,求证:BM:MC=sin2C:sin2B。 此即《首届全国数学奥林匹克命题比赛精选》中的一题,本刊1995年第6期给出了简证,其实还有更绝的证法如下: 证 作BE⊥AM于E,作CF⊥AM于F,显然∠AOC=2B,∠AOB=2C,OA=OB=OC=R,∵△BEM∽△CFM,∴BE/CF=BM/MC,sin2C/sin2B=((1/2)R~2sin∠AOB)/((1/2)R~2sin∠AOC)=S_△AOB/S_△AOC=BE/CF,  相似文献   

14.
设A_1,B_1,C_1分别是△ABC中BC,CA,AB边上的任意点,则你△A_1B_1C_1为△ABC的内接三角形。本文中记△ABC的面积为S,AB=c,BC=a,CA=b,内切圆半径为r,三旁切圆半径为r_a,r_b,r_c;AC_1/C_1B=m,BA_1/A_1C=n,CB_1/B_1A=l,△AC_1B_1,△BA_1C_1,△CB_1A_1,△A_1B_1C_1的面积分别为S_1,S_2,S_3,S′。则有。定理、△ABC的面积S与其内接△A_1B_1C_1面积S′有如下关系式:S′=(1+mnl)/((1+m)(1+n)(1+l))S其中AC_1/C_1B=m,CB_1/B_1A=l,BA_1/A_1C=n。  相似文献   

15.
本文利用轴对称图形性质“每条对称轴的左右两边的图形都全同”,先解决以下问题:如图1中,OE是等边三角形OAB的对称轴,OF是等边三角形OCD的对称轴,且OA=4(cm),OC=3(cm),那么AD的图1长是5(c m).简证因OE是△OAB的对称轴,所以OE是∠AOB的角平分线,又OF是△OCD的对称轴,所以OF是∠COD的角平分线,于是∠AOC=∠COB=∠BOD=30°,由此得∠AOD=∠AOC+∠COB+∠BOD=30°+30°+30°=90°,所以△OAD是直角三角形,于是AD2=OA2+OD2=OA2+OC2=42+32=52,因此AD=5(cm).现在我们顺着这个思路再逆想如下一问题:题目如图2,∠EOF=30°…  相似文献   

16.
动态几何问题以其丰富的特性频频亮相于中考试题,尤其是与二次函数的结合,更加增添了动态几何的“个性”魅力,现采撷2009年中考题几例作一简析,供学习参考.1单动点与二次函数例1(2009年深圳)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA0,n>0),连接DP交BC于点E.当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连结CD、CP(如图3),△CDP是否有最大面积若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.图1图2图3图4解(1)设OA的长为x,则OB=5-x,因OC=2,AB=5,∠AOC=∠BOC=90°,∠OAC=∠OCB,故△AOC∽△COB;故CO2=OA.OB,即22=x(5-x),解得:x1=1,x2=4.因OA  相似文献   

17.
九年级数学练习题中有一道题为:如图,△ABC中,∠C=90.,AB=c,A C=b,BC=a,求其内切圆⊙O的半径r. 解法一:根据三角形面积求连结AO、BO、CO. ∵SΔAOC=1/2AC·r SΔBOC=1/2 BC·r S△AOB=1/2AB·r ∴SΔABC=1/2AC·r+1/2BC·r+1/2AB·r=1/2r(a+b+c) 又S△ABC=1/2BC·AC=1/2ab ∴1/2r( a+b+c)=1/2ab ∴r=ab/a+b+c 解法二:利用切线长性质求 作OD⊥AC,OE⊥BC,OF⊥AB,则四边形DCEO为正方形.  相似文献   

18.
命题 如图1,P、Q是△ABC的等角共轭点(∠PAB=∠QAC,∠PBC=∠QBA,∠PCB=∠QCA),R、S_△表示 △ABC的外接圆半径和△ABC的面积。则AP·AQ·BC BP·BQ·AC CP·CQ·AB=4R·S_△。  相似文献   

19.
题目 :已知四边形ABCD的对角线AC与BD相交于点O .若S△AOB=4 ,S△COD=9,则S四边形ABCD的最小值为 (   ) .(A) 2 1  (B) 2 5  (C) 2 6  (D) 36我们给出如下解法 ,对试题与解法进行探索 .图 1解 :如图 1 ,过点A、C作BD的垂线 ,垂足分别为F、E .设AF =h1,CE =h2 ,BD =a ,OD =x .那么 ,OB =a -x .由已知条件可得12 (a -x)h1=S△AOB=4 ,12 xh2 =S△COD=9.从而 ,h1=8a -x,h2 =1 8x.①又S四边形ABCD=S△AOB+S△COD+S△BOC+S△AOD=S△BOC+S△AOD+1 3.于是 ,求四边形ABCD面积的最小值问题转化为求y =S△BOC+…  相似文献   

20.
本刊93年第5期“抛物线与三角形面积”一文,给出了下面的两个结论:设抛物线y=ax~2+bx+c(a≠0)当△=b~2-4ac>0时,抛物线与x轴的两交点为A、B,顶点为C,与y轴的交点为D,则本文拟对结论(2)作两点补充: ①若△ABC为等边三角形,则△=b~2-4ac=12,S_(△ABC)=3 3~(1/2)/a~2. ②若△ABC为等腰直角三角形,则△=b~2-4ac=4,S_(△ABC)=1/a~2. 由于△ABC的底边AB=△/|a|,高为|△/4a|;当△ABC为等边三角形时,高为底边的3~(1/2)/2倍;当△ABC为等腰直角三角形时,高为底边的一半,利用这两点,不难证明以上两个结  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号