首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
教育   65篇
科学研究   1篇
各国文化   1篇
体育   5篇
信息传播   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2014年   1篇
  2013年   11篇
  2012年   3篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2002年   1篇
  2001年   12篇
  2000年   1篇
  1999年   1篇
  1992年   2篇
  1990年   4篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1972年   1篇
  1968年   1篇
  1966年   3篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
71.
72.
The models presented here posit a complex relationship between efficacy in student engagement and intent-to-leave that is mediated by in-class variables of instructional management, student behavior stressors, aspects of burnout, and job satisfaction. Using data collected from 631 teachers, analyses provided support for the two models that predicted teachers' intent-to-leave. To enhance generalizability, this study also tested whether the structural coefficients were invariant across teacher gender and grade level. With one exception, the models appeared largely invariant across gender and grade level. Supplementing the structural models, measurement invariance and equality of latent factor means were also explored.  相似文献   
73.
Many contemporary learning disabilities (LD) experts advocate a multitiered service delivery system. Included in this formulation is the obligation to deliver for each struggling student increasingly sophisticated and intensive services before special education is considered. For students who evidence failed response to intervention, an evaluation, suggested by some to comprise minimal cognitive and extensive achievement testing, typically ensues and helps to determine special education eligibility. We argue that neuropsychological tools are essential at this point in the process. In contrast to minimal standardized testing, use of these tools permits school psychologists to perform their most important mission – to understand, predict, and control (improve) student behavior and development by identifying learning syndromes, rather than discrete academic deficits. This article argues for neuropsychological tests as a way for school psychologists to recognize patterns of learning problems reported in the peer‐reviewed literature, which in turn promotes effective planning and intervention. © 2008 Wiley Periodicals, Inc.  相似文献   
74.
In science education, inquiry-based approaches to teaching and learning provide a framework for students to building critical-thinking and problem-solving skills. Teacher professional development has been an ongoing focus for promoting such educational reforms. However, despite a strong consensus regarding best practices for professional development, relatively little systematic research has documented classroom changes consequent to these experiences. This paper reports on the impact of sustained, multiyear professional development in a program that combined neuroscience content and knowledge of the neurobiology of learning with inquiry-based pedagogy on teachers’ inquiry-based practices. Classroom observations demonstrated the value of multiyear professional development in solidifying adoption of inquiry-based practices and cultivating progressive yearly growth in the cognitive environment of impacted classrooms.Current discussion about educational reform among business leaders, politicians, and educators revolves around the idea students need “21st century skills” to be successful today (Rotherham and Willingham, 2009 ). Proponents argue that to be prepared for college and to be competitive in the 21st-century workplace, students need to be able to identify issues, acquire and use new information, understand complex systems, use technologies, and apply critical and creative thinking skills (US Department of Labor, 1991 ; Bybee et al., 2007 ; Conley, 2007 ). Advocates of 21st-century skills favor student-centered methods—for example, problem-based learning and project-based learning. In science education, inquiry-based approaches to teaching and learning provide one framework for students to build these critical-thinking and problem-solving skills (American Association for the Advancement of Science [AAAS], 1993 ; National Research Council [NRC], 2000 ; Capps et al., 2012 ).Unfortunately, in spite of the central role of inquiry in the national and state science standards, inquiry-based instruction is rarely implemented in secondary classrooms (Weiss et al., 1994 ; Bybee, 1997 ; Hudson et al., 2002 ; Smith et al., 2002 ; Capps et al., 2012 ). Guiding a classroom through planning, executing, analyzing, and evaluating open-ended investigations requires teachers to have sufficient expertise, content knowledge, and self-confidence to be able to maneuver through multiple potential roadblocks. Researchers cite myriad reasons for the lack of widespread inquiry-based instruction in schools: traditional beliefs about teaching and learning (Roehrig and Luft, 2004 ; Saad and BouJaoude, 2012 ), lack of pedagogical skills (Shulman, 1986 ; Adams and Krockover, 1997 ; Crawford, 2007 ), lack of time (Loughran, 1994 ), inadequate knowledge of the practice of science (Duschl, 1987 ; DeBoer, 2004 ; Saad and BouJaoude, 2012 ), perceived time constraints due to high-stakes testing, and inadequate preparation in science (Krajcik et al., 2000 ). Yet teachers are necessarily at the center of reform, as they make instructional and pedagogical decisions within their own classrooms (Cuban, 1990 ). Given that effectiveness of teachers’ classroom practices is critical to the success of current science education reforms, teacher professional development has been an ongoing focus for promoting educational reform (Corcoran, 1995 ; Corcoran et al., 1998 ).A review of the education research literature yields an extensive knowledge base in “best practices” for professional development (Corcoran, 1995 ; NRC, 1996 ; Loucks-Horsley and Matsumoto, 1999 ; Loucks-Horsley et al., 2009 ; Haslam and Fabiano, 2001 ; Wei et al., 2010 ). However, in spite of a strong consensus on what constitutes best practices for professional development (Desimone, 2009 ; Wei et al., 2010 ), relatively little systematic research has been conducted to support this consensus (Garet et al., 2001 ). Similarly, when specifically considering the science education literature, several studies have been published on the impact of teacher professional development on inquiry-based practices (e.g., Supovitz and Turner, 2000 ; Banilower et al., 2007 ; Capps et al., 2012 ). Unfortunately, these studies usually rely on teacher self-report data; few studies have reported empirical evidence of what actually occurs in the classroom following a professional development experience.Thus, in this study, we set out to determine through observational empirical data whether documented effective professional development does indeed change classroom practices. In this paper, we describe an extensive professional development experience for middle school biology teachers designed to develop teachers’ neuroscience content knowledge and inquiry-based pedagogical practices. We investigate the impact of professional development delivered collaboratively by experts in science and pedagogy on promoting inquiry-based instruction and an investigative classroom culture. The study was guided by the following research questions:
  1. Were teachers able to increase their neuroscience content knowledge?
  2. Were teachers able to effectively implement student-centered reform or inquiry-based pedagogy?
  3. Would multiple years of professional development result in greater changes in teacher practices?
Current reforms in science education require fundamental changes in how students are taught science. For most teachers, this requires rethinking their own practices and developing new roles both for themselves as teachers and for their students (Darling-Hammond and McLaughlin, 1995 ). Many teachers learned to teach using a model of teaching and learning that focuses heavily on memorizing facts (Porter and Brophy, 1988 ; Cohen et al., 1993 ; Darling-Hammond and McLaughlin, 1995 ), and this traditional and didactic model of instruction still dominates instruction in U.S. classrooms. A recent national observation study found that only 14% of science lessons were of high quality, providing students an opportunity to learn important science concepts (Banilower et al., 2006 ). Shifting to an inquiry-based approach to teaching places more emphasis on conceptual understanding of subject matter, as well as an emphasis on the process of establishing and validating scientific concepts and claims (Anderson, 1989 ; Borko and Putnam, 1996 ). In effect, professional development must provide opportunities for teachers to reflect critically on their practices and to fashion new knowledge and beliefs about content, pedagogy, and learners (Darling-Hammond and McLaughlin, 1995 ; Wei et al., 2010 ). If teachers are uncomfortable with a subject or believe they cannot teach science, they may focus less time on it and impart negative feelings about the subject to their students. In this way, content knowledge influences teachers’ beliefs about teaching and personal self-efficacy (Gresham, 2008 ). Personal self-efficacy was first defined as “the conviction that one can successfully execute the behavior required to produce the outcomes” (Bandura, 1977 , p.193). Researchers have reported self-efficacy to be strongly correlated with teachers’ ability to implement reform-based practices (Mesquita and Drake, 1994 ; Marshall et al., 2009 ).Inquiry is “a multifaceted activity that involves making observations, posing questions, examining books and other sources of information, planning investigations, reviewing what is already known in light of evidence, using tools to gather, analyze and interpret data, proposing answers, explanations and predictions, and communicating the results” (NRC, 1996 , p. 23). Unfortunately, most preservice teachers rarely experience inquiry-based instruction in their undergraduate science courses. Instead, they listen to lectures on science and participate in laboratory exercises with guidelines for finding the expected answer (Gess-Newsome and Lederman, 1993 ; DeHaan, 2005 ). As such, teachers’ knowledge and beliefs about teaching and learning were developed over the many years of their own educations, through “apprenticeship of observation” (Lortie, 1975 ), in traditional lecture-based settings that they then replicate in their own classrooms. To support the implementation of inquiry in K–12 classrooms, teachers need firsthand experiences of inquiry, questioning, and experimentation within professional development programs (Gess-Newsome, 1999 ; Supovitz and Turner, 2000 ; Capps et al., 2012 ).A common criticism of professional development activities is that they are too often one-shot workshops with limited follow-up after the workshop activities (Darling-Hammond, 2005 ; Wei et al., 2010 ). The literature on teacher learning and professional development calls for professional development that is sustained over time, as the duration of professional development is related to the depth of teacher change (Shields et al., 1998 ; Weiss et al., 1998 ; Supovitz and Turner, 2000 ; Banilower et al., 2007 ). If the professional development program is too short in duration, teachers may dismiss the suggested practices or at best assimilate teaching strategies into their current repertoire with little substantive change (Tyack and Cuban, 1995 ; Coburn, 2004 ). For example, Supovitz and Turner (2000 ) found that sustained professional development (more than 80 h) was needed to create an investigative classroom culture in science, as opposed to small-scale changes in practices. Teachers need professional development that is interactive with their teaching practices; in other words, professional development programs should allow time for teachers to try out new practices, to obtain feedback on their teaching, and to reflect on these new practices. Not only is duration (total number of hours) of professional development important, but also the time span of the professional development experience (number of years across which professional hours are situated) to allow for multiple cycles of presentation and reflection on practices (Blumenfeld et al., 1991 ; Garet et al., 2001 ). Supovitz and Turner''s study (2000) suggests that it is more difficult to change classroom culture than teaching practices; the greatest changes in teaching practices occurred after 80 h of professional development, while changes in classroom investigative culture did not occur until after 160 h of professional development.Finally, research indicates that professional development that focuses on science content and how children learn is important in changing teaching practices (e.g., Corcoran, 1995 ; Desimone, 2009 ), particularly when the goal is the implementation of inquiry-like instruction designed to improve students’ conceptual understanding (Fennema et al., 1996 ; Cohen and Hill, 1998 ). The science content chosen for the professional development series described in this study was neuroscience. This content is relevant for both middle and high school science teachers and has direct connections to standards. It also is unique in that it encompasses material on the neurological basis for learning, thus allowing discussions about student learning to occur within both a scientific and pedagogical context. As a final note, it is rare for even a life science teacher to have taken any coursework in neuroscience. The inquiry-based lessons and experiments encountered by the teachers during the professional development provide an authentic learning experience, allowing teachers to truly inhabit the role of a learner in an inquiry-based setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号