首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
教育   1篇
体育   11篇
  2019年   1篇
  2017年   1篇
  2013年   4篇
  2010年   2篇
  2007年   1篇
  2003年   1篇
  1996年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
11.
Undulatory underwater swimming (UUS) is one of the major skills contributing to performance in competitive swimming. UUS has two phases– the upbeat is performed by hip extension and knee flexion, and the downbeat is the converse action. The purpose of this study was to determine which kinematic variables of the upbeat and downbeat are associated with prone UUS performance in an elite sample. Ten elite participants were filmed performing three prone 20 m UUS trials. Seven landmarks were manually digitised to calculate eighteen kinematic variables, plus the performance variable– horizontal centre of mass velocity (VCOM). Mean VCOM was significantly correlated with body wave velocity (upbeat r = 0.81, downbeat r = 0.72), vertical toe velocity (upbeat r = 0.71, downbeat r = 0.86), phase duration (upbeat r = ?0.79), peak hip angular velocity (upbeat r = 0.73) and mean knee angular velocity (upbeat r = ?0.63), all significant at P < 0.05. A multiple stepwise regression model explained 78% of variance in mean VCOM. Peak toe velocity explained 72% of the variance, and mean body wave velocity explained an additional 6%. Elite swimmers should strive for a high peak toe velocity and a fast caudal transfer of momentum to optimise underwater undulatory swimming performance.  相似文献   
12.
Weassessed the net forces created when towing swimmers while gliding and kicking underwater to establish an appropriate speed for initiating underwater kicking, and the most effective gliding position and kicking technique to be applied after a turn. Sixteen experienced male swimmers of similar body shape were towed by a motorized winch and pulley system. A load cell measured net force (propulsive force - drag force) at speeds of 1.6, 1.9, 2.2, 2.5 and 3.1 m· s-1 . At each speed, the swimmers performed a prone streamline glide, a lateral streamline glide, a prone freestyle kick, a prone dolphin kick and a lateral dolphin kick. A two-way repeated-measures analysis of variance revealed significant differences between the gliding and kicking conditions at different speeds. The results demonstrated an optimal range of speeds (1.9 to 2.2 m· s-1 ) at which to begin underwater kicking to prevent energy loss from excessive active drag. No significant differences were found between the prone and lateral streamline glide positions or between the three underwater kicking techniques. Therefore, there appears to be no significant advantage in using one streamlining technique over another or in using one kicking style over another.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号