首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   5篇
  国内免费   4篇
教育   52篇
科学研究   18篇
体育   62篇
综合类   32篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2015年   3篇
  2014年   9篇
  2013年   19篇
  2012年   14篇
  2011年   10篇
  2010年   7篇
  2009年   10篇
  2008年   8篇
  2007年   10篇
  2006年   9篇
  2005年   4篇
  2004年   15篇
  2003年   5篇
  2002年   2篇
  2001年   6篇
  2000年   6篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1989年   1篇
排序方式: 共有164条查询结果,搜索用时 31 毫秒
21.
葡萄糖代谢异常是2型糖尿病的主要病理生理改变,胰岛素依赖性和非胰岛素依赖性葡萄糖代谢通路的多个环节发生了异常改变,阐明2型糖尿病葡萄糖代谢异常的分子机制,对糖尿病的治疗和预防具有重大意义。  相似文献   
22.
研究当归多糖(ASP)对实验性糖尿病大鼠糖代谢的影响,探讨ASP对实验性糖尿病大鼠的降糖机制。制备实验性糖尿病大鼠40只,随机分成4组,分别用生理盐水、低剂量ASP(20mg.kg-1)、高剂量ASP(100mg.kg-1)以及盐酸二甲双胍(150mg.kg-1)灌胃给药,每日1次,连续21天。同时采用正常大鼠为健康对照,观察ASP对实验性糖尿病大鼠空腹血糖、血浆胰岛素、胰岛素敏感性指数、肝糖原等指标的影响。发现ASP能明显的降低糖尿病大鼠的血糖,其机制可能与其促进胰岛B细胞修复和再生有关,提示ASP有作为口服降糖药辅助用药的可能性。  相似文献   
23.
Abstract

The effects of carbohydrate (CHO) ingestion during sports which require high levels of motor and cognitive skill, such as squash, have produced conflicting results. This study aimed to explore the effect of CHO ingestion on squash skill following short duration exercise simulating the demands of squash play. Sixteen male squash players of a high standard were recruited. Following a VO2max test, and familiarisation trial, subjects completed two further trials assessing skill pre- and post-exercise designed to simulate the demands of squash play. A squash skill test assessed accuracy of the forehand and backhand straight drives. Exercise consisted of 20 minutes of shuttle running at 82(±5)% HRmax, and 9 minutes of ghosting at 94(±4)% HRmax. Capillary blood samples (20 µl) were taken at five intervals for measurement of glucose and lactate. Cognitive function was measured with choice visual and auditory reaction time (RT) tests pre- and post-exercise, as was forearm wrist flexor MVC and fatigue profile. CHO drink (6.4% CHO) or matched placebo (PL) were administered after the initial skill test (500 ml), after the shuttle running (250 ml), and after the ghosting (250 ml) in a double blind crossover design. There was no overall effect of CHO ingestion on skill maintenance (p=0.10) however, significantly fewer balls landed outside the scoring zone (p=0.03) on the CHO ingestion trial. There was no change of visual RT pre- to post-exercise on PL (+0.01±0.03s), but a significant improvement (?0.07±0.05s) was observed in the CHO trial. Auditory RT improved pre- to post-exercise during both trials. MVC and fatigue profile of the wrist flexors was not different between trials but showed a force decrement pre- to post-exercise (p<0.05). A significant difference in blood glucose was observed between trials (p<0.01) but blood lactate response during both trials was similar. These results lend some support to a beneficial effect of CHO ingestion on skill during game sports.  相似文献   
24.
Abstract

The synergistic stimulating effect of combined intake of carbohydrate and protein on plasma insulin concentration has been reported previously. However, it remains unclear whether the amount of protein ingested after exercise affects the concentrations of plasma insulin and amino acids. This study of trained men compared the effects of post-exercise co-ingestion of carbohydrate plus different amounts of whey protein hydrolysates (WPHs) with carbohydrate alone on (1) blood biochemical parameters of carbohydrate metabolism during the post-exercise phase, and (2) endurance performance. Eight trained men exercised continuously for 70 min. Immediately after exercise and 30, 60, 90, and 120 min later, the participants received supplements containing: (1) 17.5 g carbohydrate, (2) 3.0 g WPHs and 17.5 g carbohydrate (L-WPH), or (3) 8.0 g WPHs and 17.5 g carbohydrate (H-WPH). After a 2-h recovery period, the participants performed an endurance performance test. The concentrations of blood glucose were lower and plasma insulin significantly higher in the H-WPH trial compared with the carbohydrate trial. The concentrations of plasma amino acids were increased in a dose-dependent manner following ingestion of different amounts of WPHs with carbohydrate. Endurance performance was not significantly different between the three trials. Co-ingestion of carbohydrate and H-WPH was more effective than ingestion of carbohydrate alone for stimulating insulin secretion and increasing the availability of plasma amino acids. These results suggest that plasma concentrations of amino acids during the recovery period are determined by the amount of dietary protein ingested, and that it is necessary to increase the concentration of plasma amino acids above a certain level to stimulate insulin secretion.  相似文献   
25.
Abstract

We investigated the effects of ingesting carbohydrate gels with and without caffeine on a ~90-minute, four blocks intermittent sprint test (IST), in 12 recreationally trained male athletes. Using a cross-over design, one 70 ml dose of gel containing either 25 g of carbohydrate with (CHOCAF) or without (CHO) 100 mg of caffeine, or a non-caloric placebo (PL) was ingested on three occasions: one hour before, immediately prior to and during the IST. Blood glucose, rating of perceived exertion (RPE) and fatigue index (FI) were analysed. Glucose showed significantly higher values for both CHOCAF and CHO at the first (p=0.005 and p=0.000, respectively), second (p=0.009 and 0.008, respectively) and third (p=0.003 and 0.001, respectively) blocks when compared with PL, while only CHOCAF was significantly different to PL (p=0.002) at the fourth block. CHOCAF showed an improved FI (mean 5.0, s =1.7) compared with CHO (mean 7.6, s =2.6; p=0.006) and PL (mean 7.4, s =2.4; p=0.005), a significantly lower RPE (mean 14.2, s =2) compared with PL (mean 15.3, s =2; p=0.003) and a trend in respect of CHO (mean 14.9, s =2.3; p=0.056) after the third block. In conclusion, ingesting CHOCAF one hour before, prior to and during an IST is effective at transiently reducing fatigue and RPE whilst maintaining higher glucose levels at the final stages of the exercise.  相似文献   
26.
Abstract

Exercise is recognized as a frontline therapy for the prevention and treatment of type 2 diabetes (T2D) but the optimal type of exercise is not yet determined. We compared the effects of high-intensity interval training (HIIT) with moderate-intensity continuous training (MICT) for improvement of continuous glucose monitoring (CGM)-derived markers of glycaemic variability, and biomarkers of endothelial cell damage (CD31+ and CD62+ endothelial microparticles (EMPs)) within a population at elevated risk of developing T2D. Fifteen inactive overweight or obese women were randomized to 2 weeks (10-sessions) of progressive HIIT (n?=?8, 4–10X 1-min @ 90% peak heart rate, 1-min rest periods) or MICT (n?=?7, 20–50?min of continuous activity at ~65% peak heart rate). Prior and three days post-training, fasting blood samples were collected. Both HIIT and MICT improved glycaemic variability as measured by CGM standard deviation (HIIT: 0.82?±?0.39 vs. 0.72?±?0.33?mmol/L; MICT: 0.82?±?0.19 vs. 0.62?±?0.16?mmol/L, pre vs. post) and mean amplitude of glycaemic excursions (MAGE; HIIT: 1.98?±?0.81 vs. 1.41?±?0.90; MICT; 1.98?±?0.43 vs. 1.65?±?0.48, pre vs. post) with no difference between groups. CD62+ EMPs were lower following HIIT (187.7?±?65 vs. 174.9?±?55, pre vs. post) and MICT (170?±?60 vs. 160.3?±?59, pre vs. post) with no difference between groups. There was no change in 24-h mean glucose or CD31+ EMPs. Two weeks of both HIIT or MICT similarly decreased glycaemic variability and CD62+ EMPs in overweight/obese women at elevated risk of T2D.  相似文献   
27.
This study examined the effects of different work?–?rest durations during 40?min intermittent treadmill exercise and subsequent running performance. Eight males (mean?±?s: age 24.3?±?2.0 years, body mass 79.4?±?7.0?kg, height 1.77?±?0.05?m) undertook intermittent exercise involving repeated sprints at 120% of the speed at which maximal oxygen uptake (v-[Vdot]O2max) was attained with passive recovery between each one. The work?–?rest ratio was constant at 1:1.5 with trials involving short (6:9?s), medium (12:18?s) or long (24:36?s) work?–?rest durations. Each trial was followed by a performance run to volitional exhaustion at 150% v-[Vdot]O2max. After 40?min, mean exercise intensity was greater during the long (68.4?±?9.3%) than the short work?–?rest trial (54.9?±?8.1% [Vdot]O2max; P?<?0.05). Blood lactate concentration at 10?min was higher in the long and medium than in the short work?–?rest trial (6.1?±?0.8, 5.2?±?0.9, 4.5?±?1.3?mmol?·?l?1, respectively; P?<?0.05). The respiratory exchange ratio was consistently higher during the long than during the medium and short work?–?rest trials (P <?0.05). Plasma glucose concentration was higher in the long and medium than in the short work?–?rest trial after 40?min of exercise (5.6?±?0.1, 6.6?±?0.2 and 5.3?±?0.5?mmol?·?l?1, respectively; P?<?0.05). No differences were observed between trials for performance time (72.7?±?14.9, 63.2?±?13.2, 57.6?±?13.5?s for the short, medium and long work?–?rest trial, respectively; P = 0.17), although a relationship between performance time and 40?min plasma glucose was observed (P?<?0.05). The results show that 40?min of intermittent exercise involving long and medium work?–?rest durations elicits greater physiological strain and carbohydrate utilization than the same amount of intermittent exercise undertaken with a short work?–?rest duration.  相似文献   
28.
The aims of the present study were to determine whether available “fasting” and oral glucose tolerance test-derived insulin sensitivity indices could effectively discriminate between individuals with higher than normal insulin sensitivity, and whether they would all provide similar information in clinical practice. Sprint runners (n = 8), endurance runners (n = 8) and sedentary controls (n = 7) received a 75-g oral glucose tolerance test. All participants were healthy lean males, aged 21?–?29 years. Besides glucose and insulin responses, a total of nine such indices were computed. Fasting as well as post-load glucose concentrations were similar in the three groups, while basal plasma insulin and the insulinaemic response to glucose were both higher in untrained individuals (at P?<?0.05 and P?<?0.02, respectively). There were no differences between endurance and sprint runners. The results for insulin sensitivity, however, were quite variable: three indices showed that both groups of athletes were more insulin-sensitive than controls; three indicated that this was the case for endurance runners only; one indicated that this was the case for sprint runners only; and two showed that sprint runners were more insulin-sensitive than either sedentary individuals or endurance runners (all differences were significant at P?<?0.05). Controlling for total body weight or lean mass did not effectively resolve this disagreement. Apparently, the various insulin sensitivity indices examined provided different quantitative and qualitative information, despite insulin action being greater in both groups of athletes relative to controls, as reflected by their similar glucose tolerance with lower insulin concentrations. We suggest, therefore, that the use and interpretation of such indices among physically active individuals be made with caution.  相似文献   
29.
目的:旨在研究肌酸补充(CS)和电刺激(ES)对C2C12肌管葡萄糖摄取相关通路蛋白含量和基因表达的影响,阐明肌酸对GLUT4调节的相关信号通路,并讨论CS是否对ES具有叠加效应,为肌酸提高耐力水平提供新的理论依据。研究方法:0.5mM和2 mM浓度的肌酸孵育分化5 d的肌管48h,然后电刺激(15V,30ms,3Hz)共分化7d的肌管120 min。结果:ES引起AMPK-α2和GLUT4 mRNA表达及GLUT4蛋白含量显著增加(P<0.05),糖原显著下降(P<0.05)。不同浓度的CS没有引起AMPK-α2 mRNA表达变化,却使得GLUT4 mRNA和蛋白含量显著增加(P<0.05),糖原含量也无显著性增加(P>0.05)。ES+CS组与C组和同浓度CS组相比,明显上调AMPK-α2 mRNA和GLUT4 mRNA表达及GLUT4蛋白含量(P<0.05)。结论:1)15V,30ms,3Hz的刺激参数,ES120min没有引起细胞膜明显损伤,是研究耐力运动对肌肉糖代谢影响的适合参数。2)ES能通过AMPK途径增加肌管糖摄入和糖转运。3)单纯CS对肌管糖含量没影响,肌酸或许是通过AMPK非依赖性通路调节糖摄入。4)CS对ES对糖摄入的调节具有叠加效应。  相似文献   
30.
Abstract

In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; [Vdot]O2max 55.5 ml · kg?1 · min?1, s = 5.8) undertook repeated sprints at 120% of the speed at which [Vdot]O2max was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = ?0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = ?0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号