首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   633篇
  免费   25篇
  国内免费   12篇
教育   31篇
科学研究   5篇
体育   530篇
综合类   104篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   19篇
  2019年   20篇
  2018年   29篇
  2017年   35篇
  2016年   23篇
  2015年   28篇
  2014年   16篇
  2013年   115篇
  2012年   22篇
  2011年   29篇
  2010年   19篇
  2009年   17篇
  2008年   16篇
  2007年   28篇
  2006年   26篇
  2005年   35篇
  2004年   32篇
  2003年   18篇
  2002年   17篇
  2001年   19篇
  2000年   22篇
  1999年   20篇
  1998年   14篇
  1997年   17篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
排序方式: 共有670条查询结果,搜索用时 31 毫秒
1.
ABSTRACT

Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen’s d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.  相似文献   
2.
目的:了解不同性别乒乓球运动员完成并步、跳步、跨步3种常用步法时膝关节的负荷特征,并探析乒乓球运动员膝关节的损伤机制。方法:对乒乓球男、女各10名运动员完成3种常用步法动作时的下肢运动学、动力学数据进行采集和处理,并运用方差分析法比较不同性别、不同技术之间的差异。结果:受试者在完成3种步法过程中,膝关节屈角大致范围在20°~60°。当地面反作用力最大时,女运动员比男运动员表现出更小的外展角(P<0.05),跳步比并步和跨步表现出更小的外展角(P<0.05);在三维受力方面,膝关节受到垂直方向上的力最大,水平向后和向左的力次之,未表现出显著的性别差异和技术差异;在三维力矩方面,膝关节受到的伸膝力矩较大,也未表现出显著的性别差异和技术差异。结论:膝关节屈曲状态下,较大的地面反作用力和膝关节外展角易导致乒乓球运动员前交叉韧带损伤,女运动员的损伤风险小于男运动员,跳步的损伤风险小于并步和跨步;水平向后和向左的力易造成乒乓球运动员软骨和半月板损伤;过大的伸膝力矩易导致乒乓球运动员髌腱末端病和髌骨软化。  相似文献   
3.
ABSTRACT

Professional American football games are recorded in digital video with multiple cameras, often at high resolution and high frame rates. The purpose of this study was to evaluate the accuracy of a videogrammetry technique to calculate translational and rotational helmet velocity before, during and after a helmet impact. In total, 10 football impacts were staged in a National Football League (NFL) stadium by propelling helmeted 50th percentile male crash test dummies into each other or the ground at speeds and orientations representative of concussive impacts for NFL players. The tests were recorded by experienced sports film crews to obtain video coverage and quality typically available for NFL games. A videogrammetry procedure was used to track the position and rotation of the helmet throughout the relevant time interval of the head impact. Compared with rigidly mounted retroreflective marker three dimensional (3-D) motion tracking that was concurrently collected in the experiments, videogrammetry accurately calculated changes in translational and rotational velocity of the helmet using high frame rate (two cameras at 240 Hz) video (7% and 15% error, respectively). Low frame rate (2 cameras at 60 Hz) video was adequate for calculating pre-impact translational velocity but not for calculating the translational or rotational velocity change of the helmet during impact.  相似文献   
4.
Abstract

The aim of this study was to test the correlation between knee-to-hip flexion ratio during a single leg landing task and hip and knee strength, and ankle range of motion. Twenty-four male participants from a professional soccer team performed a continuous single leg jump-landing test during 10s, while lower limb kinematics data were collected using a motion analysis system. After biomechanical testing, maximal isometric hip (abduction, extension, external rotation), knee extension and flexion strength were measured. Maximum ankle dorsiflexion range of motion was assessed statically using the weight bearing lunge test. Pearson correlation coefficients were calculated to determine the associations between the predictor variables (knee and hip strength, and ankle ROM) and the main outcome measure (knee-to-hip flexion ratio). Correlation between knee-to-hip flexion ratio and hip abductors strength was significant (r = ?0.47; p = 0.019). No other significant correlations were observed among the variables (p > 0.05). These results demonstrated that a lower hip abductors strength in male soccer players was correlated with a high knee-to-hip flexion ratio during landing from a single leg jump, potentially increasing knee overload by decreasing energy absorption at the hip. The results provide a novel proposal for the functioning of hip muscles to control knee overload.  相似文献   
5.
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant’s self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.  相似文献   
6.
The biomechanical profile of high-level endurance runners may represent a useful model that could be used for developing training programmes designed to improve running style. This study, therefore, sought to compare the biomechanical characteristics of high-performance and recreational runners. Kinematic and kinetic measurements were taken during overground running from a cohort of 14 high-performance (8 male) and 14 recreational (8 male) runners, at four speeds ranging from 3.3 to 5.6?m?s?1. Two-way ANOVA analysis was then used to explore group and speed effects and principal component analysis used to explore the interdependence of the tested variables. The data showed the high-performance runners to have a gait style characterised by an increased vertical velocity of the centre of mass and a flight time that was 11% longer than the recreational group. The high-performance group were also observed to adopt a forefoot strike pattern, to contact the ground with their foot closer to their body and to have a larger ankle moment. Importantly, although observed group differences were mostly independent of speed, the tested variables showed a high degree of interdependence suggesting an underlying unitary phenomenon. This is the first study to compare high-performance and recreational runners across a full range of kinematic and kinetic variables. The results suggest that high-performance runners maintain stride length with a prolonged aerial phase, rather than by landing with a more extended knee. These findings motivate future intervention studies that should investigate whether recreational runners could benefit from instruction to decrease shank inclination at foot contact.  相似文献   
7.
This study aimed to identify the continuous ground reaction force (GRF) features which contribute to higher levels of block phase performance. Twenty-three sprint-trained athletes completed starts from their preferred settings during which GRFs were recorded separately under each block. Continuous features of the magnitude and direction of the resultant GRF signals which explained 90% of the variation between the sprinters were identified. Each sprinter’s coefficient score for these continuous features was then input to a linear regression model to predict block phase performance (normalised external power). Four significant (p < 0.05) predictor features associated with GRF magnitude were identified; there were none associated with GRF direction. A feature associated with greater rear block GRF magnitudes from the onset of the push was the most important predictor (β = 1.185), followed by greater front block GRF magnitudes for the final three-quarters of the push (β = 0.791). Features which included a later rear block exit (β = 0.254) and greater front leg GRF magnitudes during the mid-push phase (β = 0.224) were also significant predictors. Sprint practitioners are encouraged, where possible, to consider the continuous magnitude of the GRFs produced throughout the block phase in addition to selected discrete values.  相似文献   
8.
Adult overhead athletes without a history of shoulder injury show scapular adaptations. There is a lack of detailed assessment of scapular kinematics in junior overhead athletes. This study aims to investigate three-dimensional scapular kinematics in junior overhead athletes. We recruited a total of 20 junior tennis players and 20 healthy children without participation in any overhead sports in this study. Bilateral scapular kinematic data were recorded using an electromagnetic tracking device for scapular plane glenohumeral elevation. The data were further analysed at 30°, 45°, 60°, 90° and 120° during glenohumeral elevation and lowering. Statistical comparisons of the data between groups (junior overhead athletes and non-overhead athletes) and sides (serve dominant and non-dominant shoulders of the overhead athletes) were analysed with the ANOVA. Comparisons showed that, in general, the scapula was more upwardly rotated and anteriorly tilted in overhead athletes when compared to non-overhead athletes, however there was no side-to-side differences when serve dominant and non-dominant shoulders compared in junior overhead athletes. The serve dominant arm of junior overhead athletes had alternations in scapular kinematics when compared with the non-overhead athletes. These findings provide clinical evaluation implications and the need for clinicians to assess for potential adaptations in junior overhead athletes.  相似文献   
9.
ABSTRACT

Fast bowling is categorised into four action types: side-on, front-on, semi-open and mixed; however, little biomechanical comparison exists between action types in junior fast bowlers. This study investigated whether there are significant differences between action-type mechanics in junior fast bowlers. Three-dimensional kinematic and kinetic analyses were completed on 60 junior male fast bowlers bowling a five-over spell. Mixed-design factorial analyses of variance were used to test for differences between action-type groups across the phases of the bowling action. One kinetic difference was observed between groups, with a higher vertical ground reaction force loading rate during the front-foot contact phase in mixed and front-on compared to semi-open bowlers; no other significant group differences in joint loading occurred. Significant kinematic differences were observed between the front-on, semi-open and mixed action types during the front-foot contact phase for the elbow and trunk. Significant kinematic differences were also present for the ankle, T12-L1, elbow, trunk and pelvis during the back-foot phase. Overall, most differences in action types for junior fast bowlers occurred during the back-foot contact phase, particularly trunk rotation and T12-L1 joint angles/ranges of motion, where after similar movement patterns were utilized across groups during the front-foot contact phase.  相似文献   
10.
生物医学工程学(Biomedical Engineering,BME)是包含多种技术并相互交叉融合的一门科学。它综合了生物学、医学与工程学的理论和方法,研究生命体的构造、功能、状态和变化,研究新材料、新技术、新仪器设备,用于防病、治病、保护人民健康和提高医学水平。涉及科学领域广泛,除生物学、医学外,还有电子学、微电子学、现代计算机技术、化学、高分子化学、力学、近代物理学、光学、射线学、精密机械和近代高技术,并在不断发展扩大,是各国争相大力发展的高技术之一。本文主要从生物力学、组织工程学、生物材料与人工器官等方面进行探讨。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号