首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
教育   9篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 129 毫秒
1
1.
The current study compared different learners’ static and dynamic mental images of unseen scientific species and processes in relation to their spatial ability. Learners were classified into verbal, visual and schematic. Dynamic images were classified into: appearing/disappearing, linear-movement, and rotation. Two types of scientific entities and their related processes were investigated: astronomical and microscopic. The sample included 79 female students from Grades 9 and 10. For the purpose of the study, three instruments were used. The Mental Images by Guided Imagery instrument was designed to investigate participants' visualization of static and dynamic mental images. The Water-Level Task was adopted to estimate participants' spatial ability. The Learning Styles Inventory was used to classify participants into verbal, visual and schematic learners. The research findings suggest that schematic learners outperformed verbal and visual learners in their spatial ability. They also outperformed them in their vividness of microscopic images; both micro-static and micro-dynamic images; especially in the case of appearing/disappearing images. The differences were not significant in the case of astronomical images. The results also indicate that appearing/disappearing images received the least vividness scores for all three types of learners.  相似文献   
2.
The purpose of the current study was to explore learners’ evaluation of the credibility of scientific models that represent natural entities and phenomena. Participants were 845 students in grades 9 – 11 (aged 15 – 17 years) and 108 prospective science teachers in Oman, totaling 953 students. A survey called Epistemologies about the Credibility of Scientific Models was designed to explore participants’ epistemological positions regarding the credibility of scientific models. This instrument was based on a credibility taxonomy proposed by the author. This taxonomy was composed of four epistemological levels: certainty, imaginary, suspicious, and denial; thus, it was called the CISD taxonomy. Findings revealed that natural entities and phenomena were assigned to CISD levels according to their level of abstractness. This level of abstractness is usually constructed by the most frequently used models to represent each natural entity or phenomenon. For instance, entities, which were usually represented by photographs or micrographs, such as meteors and meteorites, blood cells and bacteria, fell at the certainty level. On the other hand, theoretical entities such as electron cloud and photons had a high suspicious–denial combinational level. Some entities, with possible competing concrete–abstract parallel nature of the scientific models that represent them, had both high certainty and suspicious–denial levels. The overall students’ epistemological perceptions across grade levels showed a decrease in the certainty level and an increase in the imaginary level. It might also be plausible to conclude that new, detailed microscopic and more abstract knowledge raised the suspicious and denial levels of some entities. Further research based on qualitative research methodologies is needed to explore these findings.  相似文献   
3.
This classroom observation study explored how science teachers (N = 22) teach for creativity in grades 5–10 in Oman. We designed an observation form with 4 main categories that targeted the instructional practices related to teaching for creativity: questioning strategy, teacher’s responses to students’ ideas, classroom activities to support creativity, and whole-lesson methods that foster creativity. An open-ended survey was also designed to explore participants’ justifications for their instructional decisions and practices. The findings indicate that the overall level of teaching for creativity was low and that participants’ performance was the highest for teacher’s responses to students’ ideas category and the lowest for classroom activities to support creativity category. We observed that a teacher-centered approach with instructional practices geared toward preparing students for examinations was dominant and that these science teachers were bound to the textbook, following cookbook-style activities. Participants believed that they did not have enough time to cover the content and teach for creativity and that they were not prepared to teach for creativity. Based on these findings, we recommend that programs be developed to prepare science teachers to teach for creativity.  相似文献   
4.
This study explores the mental images at the microscopic level of matter created by 22 preservice science teachers in Oman. Participants were encouraged during a guided imagery session to construct mental images for a scenario written about the explanation of the reaction of sodium in water. They were then asked to describe what they envisioned in their own imagination. Participants had images that were based on textbook illustrations, modeling kits, a solar-system model, physical properties, and humanized animations. 3D mental images represented 33.36% of participants’ mental images at the microscopic level, while images in 2D format formed 39.15% of the overall created mental images. Several factors shaped the participants’ mental images, such as their imaginative ability, attention mode, and the nature of their old images stored in their long-term memory. Most of the participants experienced image transformation from one form to another as they were progressing in the GI session. This unstable reliance on different models might indicate unorganized conceptual networks in learners’ LTM: a feature that characterizes novices’ mental networking. On the contrary, past research has revealed that experts have more organized and sophisticated conceptual networking. This study argued that participants lacked the homogeneous and reliable mental model of the atom that is required to carry out advanced cognitive processes for mental exploration of chemical phenomena. The absence of this mental model might explain the overwhelming finding in literature that many learners fail to explain and predict chemical phenomena.  相似文献   
5.
6.
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students’ spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The experimental group studied chemistry using mobile tablets that had a digital instructional package with different animation and simulations. There was one tablet per student. A spatial ability test and a scientific reasoning test were administered to both groups prior and after the study, which lasted for 9 weeks. The findings showed that there were significant statistical differences between the two groups in terms of spatial ability in favour of the experimental group. However, there were no differences between the two groups in terms of reasoning ability. The authors reasoned that the types of animations and simulations used in the current study featured a wide range of three-dimensional animated illustrations at the particulate level of matter. Most probably, this decreased the level of abstractness that usually accompanies chemical entities and phenomena and helped the students to visualize the interactions between submicroscopic entities spatially. Further research is needed to decide on types of scientific animations that could help students improve their scientific reasoning.  相似文献   
7.
The purpose of the current study was to examine the nature of the relationship between learners’ distrust of scientific models that represent unseen entities and phenomena, their spatial ability, and the vividness of their mental images. The sample consisted of 302 tenth grade students in the Sultanate of Oman. Three measures were used for this study: the Epistemologies about the Credibility of Scientific Models instrument, the Water Level Task (WLT), and the Vividness of Microscopic Mental Images. It was found that students’ distrust was greater for theoretical and abstract models such as the electron clouds, photons, magnetic lines of force, DNA, electron transfer, atomic orbits, and alpha rays. The findings also show that there was a statistically significant negative correlation between students’ distrust of scientific models and their spatial ability, as indicated by their performance on the WLT. There was a positive relationship between the distrust of scientific models and the vividness of mental images and a weak negative relationship between spatial ability and the vividness of mental images. Based on the findings, it might be plausible to conclude that as the abstraction level for scientific models increases, such as for theoretical models which lack defined structure and known details, imaginative learners’ difficulty to construct colorful and detailed mental images for natural entities and phenomena increases. It would also be recommended that learners with vivid mental images should be provided with and directed to use more spatial techniques such as computerized visualization tools and mental manipulation of 3D objects.  相似文献   
8.
The purpose of this study was to explore high school students' ideas regarding two theoretical scientific models, either electron cloud or sodium chloride crystal, in the context of active learning in small groups. Conversations among peers regarding these models took place during two types of active learning activities: small-group discussion and whole-class debate. The study was conducted in four different high school classes, each of which was in a different school for girls in Oman. The study included 108 grade 10 female students. Two of the classes discussed the electron cloud and the other two classes discussed the sodium chloride model. Qualitative data included students' written responses to prompts, class worksheets, and field notes of student ideas in class debates. In each class, the teacher used a teaching sequence during which the participants expressed their justifications for their positions in writing regarding the particular model on five different occasions, as they progressed through three interactive small group learning activities. The participants' written responses were analyzed using a coding scheme comprising of eight different categories describing the participants' type of justifications regarding the theoretical scientific models: nonsense, approval, mental, experimental, appreciative, external, structural, and modeling. The findings indicated that participants' justifications for their positions regarding theoretical scientific models tended to change over time following each group learning activity. Participants focused their discussion more on external factors, such as the teacher, textbook, religion, and media, after discussions with peers in small groups. In contrast, later their attention focused more on the submicroscopic structural orientations of the model under study during and after engaging in a debating activity. The researchers reasoned that the nature of cognitive demands during each type of active learning activity might play a role in this regard. However, further research to advance the understanding of this phenomenon is needed.  相似文献   
9.

This classroom observation study explored how science teachers (N = 22) teach for creativity in grades 5–10 in Oman. We designed an observation form with 4 main categories that targeted the instructional practices related to teaching for creativity: questioning strategy, teacher’s responses to students’ ideas, classroom activities to support creativity, and whole-lesson methods that foster creativity. An open-ended survey was also designed to explore participants’ justifications for their instructional decisions and practices. The findings indicate that the overall level of teaching for creativity was low and that participants’ performance was the highest for teacher’s responses to students’ ideas category and the lowest for classroom activities to support creativity category. We observed that a teacher-centered approach with instructional practices geared toward preparing students for examinations was dominant and that these science teachers were bound to the textbook, following cookbook-style activities. Participants believed that they did not have enough time to cover the content and teach for creativity and that they were not prepared to teach for creativity. Based on these findings, we recommend that programs be developed to prepare science teachers to teach for creativity.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号