首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
教育   15篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2006年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach’s alpha reliability of 0.88. The findings showed that the teachers’ conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers’ understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.  相似文献   
2.
This study was conducted with 330 Form 4 (grade 10) students (aged 15??C?16?years) who were involved in a course of instruction on electrolysis concepts. The main purposes of this study were (1) to assess high school chemistry students?? understanding of 19 major principles of electrolysis using a recently developed 2-tier multiple-choice diagnostic instrument, the Electrolysis Diagnostic Instrument (EDI), and (2) to assess students?? confidence levels in displaying their knowledge and understanding of these electrolysis concepts. Analysis of students?? responses to the EDI showed that they displayed very limited understanding of the electrolytic processes involving molten compounds and aqueous solutions of compounds, with a mean score of 6.82 (out of a possible maximum of 17). Students were found to possess content knowledge about several electrolysis processes but did not provide suitable explanations for the changes that had occurred, with less than 45?% of students displaying scientifically acceptable understandings about electrolysis. In addition, students displayed limited confidence about making the correct selections for the items; yet, in 16 of the 17 items, the percentage of students who were confident that they had selected the correct answer to an item was higher than the actual percentage of students who correctly answered the corresponding item. The findings suggest several implications for classroom instruction on the electrolysis topic that need to be addressed in order to facilitate better understanding by students of electrolysis concepts.  相似文献   
3.
Taking a stance and supporting it are intrinsic acts in expository/argumentative essays. One question of interest to English teachers is how to improve the development and expression of support arguments in students' essays. This paper offers an answer by examining students' stance‐support strategies in informal argument, and identifying the associated lexico‐grammatical features that they use and do not use to realise those strategies. The paper will show how research findings on students' argument practices and use of language resources in an informal context can inform the process of deciding what thinking skills and language forms to teach in composition classes.  相似文献   
4.
Background: Enhancing students’ metacognitive abilities will help to facilitate their understanding of science concepts.

Purpose: The study was designed to conduct and evaluate the effectiveness of a repertoire of interventions aimed at enhancing secondary school students’ metacognitive capabilities and their achievements in science.

Sample: A class of 35 Year 9 students participated in the study.

Design and methods: The study involved a pre-post design, conducted by the first author as part of the regular designated science programme in a class taught by him.

In order to enhance the students’ metacognitive capabilities, the first author employed clearly stated focused outcomes, engaging them in collaborative group work, reading scientific texts and using concept mapping techniques during classroom instruction. The data to evaluate the effectiveness of the metacognitive interventions were obtained from pre- and post-test results of two metacognitive questionnaires, the Metacognitive Support Questionnaire (MSpQ) and the Metacognitive Strategies Questionnaire (MStQ), and data from interviews. In addition, pre-test and post-test scores were used from a two-tier multiple-choice test on Light.

Results: The results showed gains in the MSpQ but not in the MStQ. However, the qualitative data from interviews suggested high metacognitive capabilities amongst the high- and average-achieving students at the end of the study. Students gains were also evident from the test scores in the Light test.

Conclusion: Although the quantitative data obtained from the Metacognitive Strategies Questionnaire did not show significant gains in the students’ metacognitive strategies, the qualitative data from interviews suggested positive perceptions of students’ metacognitive strategies amongst the high- and average-achieving students. Data from the Metacognitive Support Questionnaire showed that there were significant gains in the students’ perceptions of their metacognitive support implying that the majority of the students perceived that their learning environment was oriented towards the development of their metacognitive capabilities. The effect of the metacognitive interventions on students’ achievement in the Light test resulted in students displaying the correct declarative knowledge, but quite often they lacked the procedural knowledge by failing to explain their answers correctly.  相似文献   

5.
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students’ self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students’ self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students’ understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students’ engineering design self-efficacy and qualitative analyses to identify students’ understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students’ self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students’ understanding of engineering design processes. This research provides insights into the key elements of middle school students’ engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.  相似文献   
6.
This paper presents the effects of a cognitive acceleration program in mathematics classes on Tongan students’ achievements, motivation and self-regulation. Cognitive Acceleration in Mathematics Education (CAME) is a program developed at King’s College and implemented worldwide with the aim of improving students’ thinking skills, mathematics performance and attitudes. The first author adapted the program materials to Tongan educational context and provided support to participating teachers for 8 months. This study employed a quasi-experimental design with 219 Year 8 students as the experimental group and 119 Year 8 students as the comparison group. There were a significant differences in the mean scores between the pre-test and post-test of the three instruments that were employed in the study, indicating that learning mathematics under the CAME program had a positive effect on levels of students’ self-regulation, motivation and mathematics achievement. Students also reported changes to the ways they learn mathematics.  相似文献   
7.
A thorough understanding of chemical bonding requires familiarity with the particulate nature of matter. In this study, a two‐tier multiple‐choice diagnostic instrument consisting of ten items (five items involving each of the two concepts) was developed to assess students’ understanding of the particulate nature of matter and chemical bonding so as to identify possible associations between students’ understandings of the two concepts. The instrument was administered to 260 Grades 9 and 10 students (15–16 years old) from a secondary school in Singapore. Analysis of students’ responses revealed several alternative conceptions about the two concepts. In addition, analysis of six pairs of items suggested that students’ limited understanding of the particulate nature of matter influenced their understanding of chemical bonding. The findings provide useful information for challenging students’ alternative conceptions about the particulate nature of matter during classroom instruction in order to enable them to achieve better understanding of chemical bonding.  相似文献   
8.
Background : The Trends in International Mathematics and Science Study (TIMSS) assesses the quality of the teaching and learning of science and mathematics among Grades 4 and 8 students across participating countries.

Purpose : This study explored the relationship between positive affect towards science and mathematics and achievement in science and mathematics among Malaysian and Singaporean Grade 8 students.

Sample : In total, 4466 Malaysia students and 4599 Singaporean students from Grade 8 who participated in TIMSS 2007 were involved in this study.

Design and method : Students’ achievement scores on eight items in the survey instrument that were reported in TIMSS 2007 were used as the dependent variable in the analysis. Students’ scores on four items in the TIMSS 2007 survey instrument pertaining to students’ affect towards science and mathematics together with students’ gender, language spoken at home and parental education were used as the independent variables.

Results : Positive affect towards science and mathematics indicated statistically significant predictive effects on achievement in the two subjects for both Malaysian and Singaporean Grade 8 students. There were statistically significant predictive effects on mathematics achievement for the students’ gender, language spoken at home and parental education for both Malaysian and Singaporean students, with R 2 = 0.18 and 0.21, respectively. However, only parental education showed statistically significant predictive effects on science achievement for both countries. For Singapore, language spoken at home also demonstrated statistically significant predictive effects on science achievement, whereas gender did not. For Malaysia, neither gender nor language spoken at home had statistically significant predictive effects on science achievement.

Conclusions : It is important for educators to consider implementing self-concept enhancement intervention programmes by incorporating ‘affect’ components of academic self-concept in order to develop students’ talents and promote academic excellence in science and mathematics.  相似文献   
9.
This study investigated Indonesian and Japanese senior high-school students’ understanding of electrochemistry concepts.

Sample

The questionnaire was administered to 244 Indonesian and 189 Japanese public senior high-school students.

Design and methods

An 18-item multiple-choice questionnaire relating to five conceptual categories (reactions occurring during electrolysis, differences between electrolytic and voltaic cells, movement of ions in voltaic cells, poles in voltaic cells, voltaic cell reactions) was administered.

Results

The findings of this study show that difficulties and alternative conceptions previously reported in the literature are held equally by students from a developing and developed country, Indonesian and Japan respectively.

Conclusions

Collectively, the findings suggest that students’ understanding of electrochemistry concepts is relatively weak. Students from both samples shared common difficulties and displayed several alternative conceptions dealing with electrolysis, electricity flow, the voltaic cell and the electrode reactions. Not surprisingly, the students displayed limited consistency in understanding of the concepts in the five categories. This study has implications for teaching and learning, particularly in classroom discussions using models and computer animations in order to reinforce understanding at the sub-microscopic level.  相似文献   
10.
This research involved na?ve physics learners who were interested in majoring in science or engineering. In a semester-long quasi-experimental study, open-ended pretests and weekly interviews were used to analyse the progressive development of students’ conceptions relating to sound and wave motion. Semi-structured interviews were also conducted to elucidate: (1) how their conceptions developed from everyday conceptions to unclear scientific conceptions to scientific conceptions, and (2) their beliefs of physics knowledge. Despite efforts to enable these students to learn physics, the findings showed that only two out of ten students developed acceptable physics conceptions during the course that would enable them to pursue the subject to a higher level. Also, students’ conceptual development was found to be related to their cognitive understanding and to epistemological beliefs of physics. Therefore, to facilitate na?ve physics learners’ success in a general physics course, in addition to the acquisition of content knowledge, explicit emphasis needs to be placed on the nature of physics knowledge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号