首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
教育   8篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2003年   2篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
In a large introductory physics course, structured weekly journals (weekly reports) regularly encouraged students to ask questions about the material. The resulting questions were collected for one quarter and coded based on difficulty and topic. Students also took several conceptual tests during the quarter. The reports contained more questions than typically observed in a college classroom, but the number of questions asked was not correlated to any measure of conceptual performance. Relationships among different types of questions and performance on these tests were explored. Deeper‐level questions that focus on concepts, coherence of knowledge, and limitations were related to the variance in student conceptual achievement. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 776–791, 2003  相似文献   
2.
Laboratory instruction is critical to the understanding of biology and is a central piece of biological sciences instruction. Although much investigation has focused on the content of biology laboratory exercises, we contend that understanding the extent to which the laboratory materials can aid or limit experimental investigation is of equal importance. In this study, therefore, we investigate the role of timing and availability of laboratory equipment in the context of two different laboratory exercises. We use both case study and an experimental approach to investigate how laboratory materials guide the planning, context, creativity, and timing of ideas shared among students. Our data support the notion that providing students with laboratory equipment before students plan and consider different experimental approaches can constrain students' ideas and encourage tool‐focused solutions to experimental design tasks. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 1010–1025, 2011  相似文献   
3.
Researchers believe that the way that students talk, specifically the language that they use, can offer a window into their reasoning processes. Yet the connection between what students are saying and what they are actually thinking can be ambiguous. We present the results of an exploratory interview study with 10 participants, designed to investigate the role of language in university physics students' reasoning about heat in thermodynamic processes. The study revealed two key findings: (1) students' approaches to solving certain heat-related problems are related to the way in which they explicitly define the word ‘heat’ and (2) students' tendency to reason with heat as a state function in inappropriate contexts appears to be connected to a model of heat implicitly encoded in language. This model represents heat or heat energy/thermal energy as a substance that moves from one location to another. In this model, students talk about thermodynamic systems as ‘containers' of heat, and temperature is a measure of the amount of heat ‘in' an object.  相似文献   
4.
The Rutgers Astrophysics Institute is a program in which gifted high school students learn about contemporary science and its methods, and conduct independent authentic research using real‐time data. The students use the processes of science to acquire knowledge, and serve as cognitive apprentices to an expert astrophysicist. A variety of naturalistic and statistical methods were employed to gather data concerning various changes in the students as a result of their participation in the institute. Specifically, we concluded that students were able to (a) distinguish between observational data and models, devise testing experiments, and reflect on the analysis and the interpretation of X‐ray data; (b) achieve results comparable to those of regular Advanced Placement (AP) students on individual AP exam problems (the students had not taken AP Physics), (c) engage in elements of meaningful authentic research, and (d) change their approaches toward learning science. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 958–985, 2003  相似文献   
5.
Research in Science Education - We use the framework of cognitive resources to investigate how students construct understanding of a complex physics topic, namely, a photovoltaic cell. By observing...  相似文献   
6.
Design activities, when embedded in an inquiry cycle and appropriately scaffolded and supplemented with reflection, can promote the development of the habits of mind (scientific abilities) that are an important part of scientific practice. Through the Investigative Science Learning Environment (ISLE), students construct physics knowledge by engaging in inquiry cycles that replicate the approach used by physicists to construct knowledge. A significant portion of student learning occurs in ISLE instructional labs where students design their own experiments. The labs provide an environment for cognitive apprenticeship enhanced by formative assessment. As a result, students develop interpretive knowing that helps them approach new problems as scientists. This article describes a classroom study in which the students in the ISLE design lab performed equally well on traditional exams as ISLE students who did not engage in design activities. However, the design group significantly outperformed the non-design group while working on novel experimental tasks (in physics and biology), demonstrating the application of scientific abilities to an inquiry task in a novel content domain. This research shows that a learning environment that integrates cognitive apprenticeship and formative assessment in a series of conceptual design tasks provides a rich context for helping students build scientific habits of mind.  相似文献   
7.
In recent decades, the interactive whiteboard (IWB) has become a relatively common educational tool in Western schools. The IWB is essentially a large touch screen, that enables the user to interact with digital content in ways that are not possible with an ordinary computer-projector-canvas setup. However, the unique possibilities of IWBs are rarely leveraged to enhance teaching and learning beyond the primary school level. This is particularly noticeable in high school physics. We describe how a high school physics teacher learned to use an IWB in a new way, how she planned and implemented a lesson on the topic of orbital motion of planets, and what tensions arose in the process. We used an ethnographic approach to account for the teacher’s and involved students’ perspectives throughout the process of teacher preparation, lesson planning, and the implementation of the lesson. To interpret the data, we used the conceptual framework of activity theory. We found that an entrenched culture of traditional white/blackboard use in physics instruction interferes with more technologically innovative and more student-centered instructional approaches that leverage the IWB’s unique instructional potential. Furthermore, we found that the teacher’s confidence in the mastery of the IWB plays a crucial role in the teacher’s willingness to transfer agency within the lesson to the students.  相似文献   
8.
This paper describes the analysis of teachers’ journal reflections during an inquiry-based professional development program. As a part of their learning experience, participants reflected on what they learned and how they learned. Progress of subject matter and pedagogical content knowledge was assessed though surveys and pre- and posttests. We found that teachers have difficulties reflecting on their learning and posing meaningful questions. The teachers who could describe how they reasoned from evidence to understand a concept had the highest learning gains. In contrast those teachers who seldom or never described learning a concept by reasoning from evidence showed the smallest learning gains. This analysis suggests that learning to reflect on one’s learning should be an integral part of teachers’ professional development experiences.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号