首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
教育   2篇
科学研究   1篇
  2021年   2篇
  2020年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Variability in analytical performance of some analyte indicated the need of evaluation of quality plan of our laboratory. We tried to put the same degree of effort into our quality metrics as we put into the laboratory processes themselves. Application of six sigma methodologies improve the quality by focusing on the root causes of the problems in performance and analyzing by flowcharts, fishbone diagrams and other quality tools. Sigma metric was calculated for laboratory parameters for a period of 8 months during 2018–19. The analytes with poor sigma metric were free Thyroxine (FT3, FT4), Sodium, Calcium and Magnesium. Sigma metric of free Thyroxine (FT3, FT4), Sodium, Calcium and Magnesium were below 3. A road map for process improvement was designed with DMAIC (Define-Measure-Analyze-Improve-Control) model to solve the issue. Possible causes for low analytical performance of the particular analytes were depicted in Fishbone diagram. The Fishbone analysis identified the water quality issues with electrolyte analysis while high ambient temperature was culprit for poor assay performance of free Thyroxine. Sigma metric of the analytical performance was assessed once again after root cause analysis. Sigmametric showed marked improvement in control phase. Identification of problems led to reduction in non value added work leading to adequate resource utilization by addressing the priority issue. Therefore, DMAIC tool with Fish bone model analysis can be recommended as a well suited method for troubleshooting in poor performance of laboratory parameter.  相似文献   
2.
Education and Information Technologies - A Correction to this paper has been published: https://doi.org/10.1007/s10639-020-10409-8  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号