首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
教育   17篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2006年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
A one-group quasi-experimental design and survey methodology were used to investigate the effect of virtual laboratory practices on preservice teachers’ (N = 29) graphic comprehension and interpretation skills with different learning approaches. Pretest and posttest data were collected with the Test of Understanding Kinematic Graphs. The Learning Approaches Scale was administered to the preservice science teachers to determine if they used an in-depth, superficial, or strategic approach. These data were analyzed using non-parametric statistics. The effect of virtual laboratory practices on these preservice teachers’ graphic comprehension and interpretation skills was evaluated, and a significant pretest–posttest gain for “Selecting the graphic related to the explanation of movement” was found. Suggestions are made to address the effects of teaching models and technology-integrated learning environments on students’ learning approach in science courses at different levels of education.  相似文献   
3.
Two research questions are answered: how did teacher instructional skills develop during a whole school year? What is the influence of this development on the interactions between students during the co-operative learning moments? From the analysis, it appeared that the teachers’ instruction changed from direct instruction to a more process and group-oriented coaching style, and that students started to work collaboratively, using the graphic calculator in an exploratory and investigative manner. This more process and group-oriented coaching style may have supported the change in the interaction pattern during this school year. The analysis showed that students gradually developed a more exploratory way of collaborating, confirming improved collaborative learning. At the commencement of the school year, students were focused on each other and did not argue much, while at the end, they were discussing with one another.  相似文献   
4.
5.
6.
Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric circuits. In response to these problems, reform initiatives in education strive for a change of the classroom culture, putting emphasis on more authentic contexts and student activities containing elements of inquiry. The challenge then becomes choosing and combining these elements in such a manner that they foster an understanding of theoretical concepts. In this article we reflect on data collected and analyzed from a series of 12 grade 9 physics lessons on simple electric circuits. Drawing from a theoretical framework based on individual (conceptual change based) and socio-cultural views on learning, instruction was designed addressing known conceptual problems and attempting to create a physics (research) culture in the classroom. As the success of the lessons was limited, the focus of the study became to understand which inherent characteristics of inquiry based instruction complicate the process of constructing conceptual understanding. From the analysis of the data collected during the enactment of the lessons three tensions emerged: the tension between open inquiry and student guidance, the tension between students developing their own ideas and getting to know accepted scientific theories, and the tension between fostering scientific interest as part of a scientific research culture and the task oriented school culture. An outlook will be given on the implications for science lessons.  相似文献   
7.
Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from 1994 to 2011. The integrated curricula were categorised according to a taxonomy of integration types synthesised from the literature. The characteristics that we deemed important were related to learning outcomes and success/fail factors. A focus group was formed to facilitate the process of analysis and to test tentative conclusions. We concluded that the levels in our taxonomy were linked to (a) student knowledge and skills, the enthusiasm generated among students and teachers, and the teacher commitment that was generated; and (b) the teacher commitment needed, the duration of the innovation effort, the volume and comprehensiveness of required teacher professional development, the necessary teacher support and the effort needed to overcome tensions with standard curricula. Almost all projects were effective in increasing the time spent on science at school. Our model resolves Czerniac’s definition problem of integrating curricula in a productive manner, and it forms a practical basis for decision-making by making clear what is needed and what output can be expected when plans are being formulated to implement integrated education.  相似文献   
8.
Based on insights into the nature of vocational mathematical knowledge, we designed a computer tool with which students in laboratory schools at senior secondary vocational school level could develop a better proficiency in the proportional reasoning involved in dilution. We did so because we had identified computations of concentrations of chemical substances after dilution as a problematic area in the vocational education of laboratory technicians. Pre- and post-test results indeed show that 47 students aged 16–23 significantly improved their proportional reasoning in this domain with brief instruction time (50–90 min). Effect sizes were mostly large. The approach of using a visual tool that foregrounds mathematical aspects of laboratory work thus illustrates how vocational mathematical knowledge can be developed effectively and efficiently.  相似文献   
9.
The concept of function is a central but difficult topic in secondary school mathematics curricula, which encompasses a transition from an operational to a structural view. The question in this paper is how the use of computer tools may foster this transition. With domain-specific pedagogical knowledge on the learning of function as a point of departure and the notions of emergent modeling and instrumentation as design heuristics, a potentially rich technology-intensive learning arrangement for grade 8 students was designed and field-tested. The results suggest that the relationship between tool use and conceptual development benefits from preliminary activities, from tools offering representations that allow for progressively increasing levels of reasoning, and from intertwinement with paper-and-pencil work.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号