首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
教育   6篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2016年   1篇
  2009年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Research in Science Education - Science teaching and learning are discursive practices, yet analysis of these practices has frequently been grounded in theorizations that place language at the...  相似文献   
2.
3.
Past studies have explored the role of student science notebooks in supporting students' developing science understandings. Yet scant research has investigated science notebook use with students who are learning science in a language they are working to master. To explore how student science notebook use is co-constructed in interaction among students and teachers, this study examined plurilingual students' interactions with open-ended science notebooks during an inquiry science unit on condensation and evaporation. Grounded in theoretical views of the notebook as a semiotic social space, multimodal interaction analysis facilitated examination of the ways students drew upon the space afforded by the notebook as they constructed explanations of their understandings. Cross-group comparison of three focal groups led to multiple assertions regarding the use of science notebooks with plurilingual students. First, the notebook supported student-determined paths of resemiotization as students employed multiple communicative resources to express science understandings. Second, notebooks provided spaces for students to draw upon diverse language resources and as a bridge in time across multiple inquiry sessions. Third, representations in notebooks were leveraged by both students and teachers to access and deepen conceptual conversations. Lastly, students' interactions over time revealed multiple epistemological orientations in students' use of the notebook space. These findings point to the benefits of open-ended science notebooks use with plurilingual students, and a consideration of the ways they are used in interaction in science instruction.  相似文献   
4.
An effective inquiry-oriented science teacher possesses more than the skills of teaching through investigation. They must address philosophies, and ways of interacting as a member of a group of educators who value and practice science through inquiry. Professional development opportunities can support inquiry identity development, but most often they address teaching practices from limited cognitive perspectives, leaving unexplored the shifts in identity that may accompany teachers along their journey in becoming skilled in inquiry-oriented instruction. In this forum article, we envision Victoria Deneroff’s argument that “professional development could be designed to facilitate reflexive transformation of identity within professional learning environments” (2013, p. 33). Instructional coaching, cogenerative dialogues, and online professional communities are discussed as ways to promote inquiry identity formation and collaboration in ways that empower and deepen science teachers’ conversations related to personal and professional efficacy in the service of improved science teaching and learning.  相似文献   
5.
This study investigates effects of multimedia on cognitive load, self-efficacy and learners' ability to solve multiple rule-based problems. Two hundred twenty-two college students were randomly assigned to interactive and non-interactive multimedia groups. Based on Engelkamp's multimodal theory, the present study investigates the role of multimedia in multiple rule-based problem solving. The findings indicate that providing learners with manipulative function in multimedia would facilitate their problem solving through reduced cognitive load and improved self-efficacy. The study identifies a significant mediator effect for self-efficacy that mediates between multimedia and learners' problem solving. Discussion focuses on the effects of multimedia and self-efficacy on learners' performance in multiple rule-based problem solving. Suggestions are made with regard to the design of problem solving in future studies.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号