首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
科学研究   1篇
  2011年   1篇
排序方式: 共有1条查询结果,搜索用时 187 毫秒
1
1.
A new strategy for magnetically manipulating and isolating adherent cells with extremely high post-collection purity and viability is reported. Micromolded magnetic elements (termed microrafts) were fabricated in an array format and used as culture surfaces and carriers for living, adherent cells. A poly(styrene-co-acrylic acid) polymer containing well dispersed magnetic nanoparticles was developed for creating the microstructures by molding. Nanoparticles of γFe(2)O(3) at concentrations up to 1% wt.∕wt. could be used to fabricate microrafts that were optically transparent, highly magnetic, biocompatible, and minimally fluorescent. To prevent cellular uptake of nanoparticles from the magnetic polymer, a poly(styrene-co-acrylic acid) layer lacking γFe(2)O(3) nanoparticles was placed over the initial magnetic microraft layer to prevent cellular uptake of the γFe(2)O(3) during culture. The microraft surface geometry and physical properties were altered by varying the polymer concentration or layering different polymers during fabrication. Cells plated on the magnetic microrafts were visualized using standard imaging techniques including brightfield, epifluorescence, and confocal microscopy. Magnetic microrafts possessing cells of interest were dislodged from the array and efficiently collected with an external magnet. To demonstrate the feasibility of cell isolation using the magnetic microrafts, a mixed population of wild-type cells and cells stably transfected with a fluorescent protein was plated onto an array. Microrafts possessing single, fluorescent cells were released from the array and magnetically collected. A post-sorting single-cell cloning rate of 92% and a purity of 100% were attained.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号