首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
科学研究   1篇
  2014年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Shear stress is the major mechanical force applied on vascular endothelial cells by blood flow, and is a crucial factor in normal vascular physiology and in the development of some vascular pathologies. The exact mechanisms of cellular mechano-transduction in mammalian cells and tissues have not yet been elucidated, but it is known that mechanically sensitive receptors and ion channels play a crucial role. This paper describes the use of a novel and efficient microfluidic device to study mechanically-sensitive receptors and ion channels in vitro, which has three independent channels from which recordings can be made and has a small surface area such that fewer cells are required than for conventional flow chambers. The contoured channels of the device enabled examination of a range of shear stresses in one field of view, which is not possible with parallel plate flow chambers and other previously used devices, where one level of flow-induced shear stress is produced per fixed flow-rate. We exposed bovine aortic endothelial cells to different levels of shear stress, and measured the resulting change in intracellular calcium levels ([Ca2+]i) using the fluorescent calcium sensitive dye Fluo-4AM. Shear stress caused an elevation of [Ca2+]i that was proportional to the level of shear experienced. The response was temperature dependant such that at lower temperatures more shear stress was required to elicit a given level of calcium signal and the magnitude of influx was reduced. We demonstrated that shear stress-induced elevations in [Ca2+]i are largely due to calcium influx through the transient receptor potential vanilloid type 4 ion channel.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号