首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
科学研究   3篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
Flow cytometry is a standard analytical method in cell biology and clinical diagnostics and is widely distributed for the experimental investigation of microparticle characteristics. In this work, the design, realization, and measurement results of a novel planar optofluidic flow cytometric device with an integrated three-dimensional (3D) adjustable optofluidic lens system for forward-scattering∕extinction-based biochemical analysis fabricated by silicon micromachining are presented. To our knowledge, this is the first planar cytometric system with the ability to focus light three-dimensionally on cells∕particles by the application of fluidic lenses. The single layer microfluidic platform enables versatile 3D hydrodynamic sample focusing to an arbitrary position in the channel and incorporates integrated fiber grooves for the insertion of glass fibers. To confirm the fluid dynamics and raytracing simulations and to characterize the sensor, different cell lines and sets of microparticles were investigated by detecting the extinction (axial light loss) signal, demonstrating the high sensitivity and sample discrimination capability of this analysis system. The unique features of this planar microdevice enable new biotechnological analysis techniques due to the highly increased sensitivity.  相似文献   
2.
Studying enzymatic bioreactions in a millisecond microfluidic flow mixer   总被引:1,自引:0,他引:1  
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel’s cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions.  相似文献   
3.
This work presents an array of microfluidic chambers for on-chip culturing of microorganisms in static and continuous shear-free operation modes. The unique design comprises an in-situ polymerized hydrogel that forms gas and reagent permeable culture wells in a glass chip. Utilizing a hydrophilic substrate increases usability by autonomous capillary priming. The thin gel barrier enables efficient oxygen supply and facilitates on-chip analysis by chemical access through the gel without introducing a disturbing flow to the culture. Trapping the suspended microorganisms inside a gel well allows for a much simpler fabrication than in conventional trapping devices as the minimal feature size does not depend on cell size. Nutrients and drugs are provided on-chip in the gel for a self-contained and user-friendly handling. Rapid antibiotic testing in static cultures with strains of Enterococcus faecalis and Escherichia coli is presented. Cell seeding and diffusive medium supply is provided by phaseguide technology, enabling simple operation of continuous culturing with a great flexibility. Cells of Saccharomyces cerevisiae are utilized as a model to demonstrate continuous on-chip culturing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号