首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
教育   11篇
科学研究   1篇
体育   2篇
文化理论   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   5篇
  2010年   1篇
  2004年   1篇
  1994年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
To determine what knowledge of genetics is needed for decision-making on genetic-related issues, a consensus-reaching approach was used. An international group of 57 experts, involved in teaching, studying, or developing genetic education and communication or working with genetic applications in medicine, agriculture, or forensics, answered the questions: “What knowledge of genetics is relevant to those individuals not professionally involved in science?” and “Why is this knowledge relevant?” The answers were classified in different knowledge components following the PISA 2015 science framework. During a workshop with the participants, the results were discussed and applied to seven cases in which genetic knowledge is relevant for decision-making. The analysis of these discussions resulted in a revised framework consisting of nine conceptual knowledge components, three sociocultural components, and four epistemic components. The framework can be used in curricular decisions; its open character allows for including new technologies and applications and facilitates comparisons of different cases.  相似文献   
2.
In this longitudinal study, individual differences in security of attachment at 18 months and effective autonomous functioning at age 2 years were related to the dimensions of ego-control and ego-resiliency at age 4--5 years. The kindergarten or nursery school teachers of 26 children completed California Child Q-Sorts. The children were also given a short form of the Block's laboratory battery (Banta's curiosity box, level of aspiration, motor impulse control delay of gratification, the Shure and Spivack Preschool Interpersonal Problem-solving Test, and the Lowenfeld mosaics). Following the Blocks, composited ego-resiliency and ego-control scores were derived from each data set. Children earlier classified as securely attached were, as predicted, significantly higher on ego-resiliency on both laboratory and Q-sort composites. They were also higher than anxiously attached infants on 3 independent measures of curiosity. An independently composited index of competence from 2-year tool-using measures also correlated significantly with later resiliency, as did 2-year measures of mothers' support and quality of assistance. The data provide initial links between the infant's quality of attachment, the toddler's effectiveness in a problem-solving situation, and competence during the preschool years.  相似文献   
3.
Effects of student versus staff tutoring on student learning in a problem-based, health sciences curriculum were studied. Academic achievement of 334 tutorial groups guided by staff tutors was compared with achievement of 400 groups guided by student tutors. In addition, students rated their tutor's performance on four behaviors considered critical to facilitating student learning. Overall, students guided by a staff tutor achieved somewhat better. In terms of practical significance, the difference was, however, fairly small. Staff tutors were rated as more knowledgeable and their contributions as more relevant. In addition, they asked stimulating questions to a larger extent. However, an interaction effect was found between the ratings and the year of study: Peer tutors displayed the supportive behaviors more extensively in the first year, whereas staff tutors' ratings were higher as the curriculum advanced. These results were interpreted in terms of the cognitive congruence framework.Parts of this article have been presented to the Annual Meeting of the American Educational Research Association, Atlanta, GA, April, 1993.  相似文献   
4.
Although molecular-level details are part of the upper-secondary biology curriculum in most countries, many studies report that students fail to connect molecular knowledge to phenomena at the level of cells, organs and organisms. Recent studies suggest that students lack a framework to reason about complex systems to make this connection. In this paper, we present a framework that could help students to reason back and forth between cells and molecules. It represents both the general type of explanation in molecular biology and the research strategies scientists use to find these explanations. We base this framework on recent work in the philosophy of science that characterizes explanations in molecular biology as mechanistic explanations. Mechanistic explanations describe a phenomenon in terms of the entities involved, the activities displayed and the way these entities and activities are organized. We conclude that to describe cellular phenomena scientists use entities and activities at multiple levels between cells and molecules. In molecular biological research, scientists use heuristics based on these intermediate levels to construct mechanistic explanations. They subdivide a cellular activity into hypothetical lower-level activities (top-down approaches) and they predict and test the organization of macromolecules into functional modules that play a role in higher-level activities (bottom-up approaches). We suggest including molecular mechanistic reasoning in biology education and we identify criteria for designing such education. Education using molecular mechanistic reasoning can build on common intuitive reasoning about mechanisms. The heuristics that scientists use can help students to apply this intuitive notion to the levels in between molecules and cells.  相似文献   
5.
Contemporary genomics research will impact the daily practice of biology teachers who want to teach up-to-date genetics in secondary education. This article reports on a research project aimed at enhancing biology teachers’ expertise for teaching genetics situated in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of an educational approach based on situated learning. What expertise do biology teachers need for teaching genetics in the personal health context of genetic testing? This article describes the required expertise by exploring the educational practice. Nine experienced teachers were interviewed about the pedagogical content, moral and interpersonal expertise areas concerning how to teach genetics in the personal health context of genetic testing, and the lessons of five of them were observed. The findings showed that the required teacher expertise encompasses specific pedagogical content expertise, interpersonal expertise and a preference for teacher roles and teaching approaches for the moral aspects of teaching in this context. A need for further development of teaching and learning activities for (reflection on) moral reasoning came to the fore. Suggestions regarding how to apply this expertise into context-based genetics education are discussed.  相似文献   
6.
Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.  相似文献   
7.
8.
The adaptive use of strategies, that is selecting a strategy which allows an efficient solution for a given problem, can be considered as an important individual ability relevant in various domains. Based on models of subjects’ skills of adaptive use of strategies, two idealized instructional approaches are suggested to foster students in their strategy development. The explicit approach aims at reducing cognitive load by demonstrating and practicing strategies combined with an explicit identification of criteria for strategy efficiency by contrasting problem solutions. The implicit approach capitalizes on the generation effect and stimulates students to generate their own strategies and efficiency criteria based on the analysis of task characteristics and the comparison of problem solutions. In a 1-week experimental study (16 lessons) with 73 third-graders, we examined the effectiveness of these instructional approaches in the domain of multi-digit addition and subtraction. Results from post- and two follow-up tests after 3 and 8?months did not yield different effects of the two approaches on students’ skills in adaptive use of strategies. A comparison of strategies used by the students showed that the students of the explicit approach more frequently applied complex strategies whereas the students from the implicit approach showed a more sustainable use of self-generated strategies. Hence, for the adaptive use of those strategies students are able to generate, the implicit approach turned out to be more effective than the explicit approach. However, this generation effect does not hold for strategies which are too complex to be generated by students.  相似文献   
9.
This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper‐secondary education introducing systems modelling as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free‐living cells, a general two‐dimensional model of cells, a three‐dimensional model of plant cells, and finally they are engaged in formal thinking by modelling life phenomena to a hierarchical systems model. The strategy was thought out, elaborated, and tested in classrooms in several research cycles. Throughout the field‐tests, research data were collected by means of classroom observations, interviews, audio‐taped discussions, completed worksheets, written tests, and questionnaires. Reflection on the research findings eventuated in reshaping and formalizing the learning and teaching strategy, which is presented here. The results show that although acquiring systems thinking competence at the metacognitive level needs more effort, our strategy contributed to improving learning outcomes; that is, acquisition of a coherent conceptual understanding of cell biology and acquisition of initial systems thinking competence, with modelling being the key activity.  相似文献   
10.
In recent decades, Science & Technology Studies (STS) have revealed the dynamic interaction between science and technology and society. Technology development is not an autonomous process and its artifacts are not socially inert. Society and technology shape each other. Technologies often have ‘soft impacts’ in terms of unpredicted side effects on individuals and society. Nevertheless, current societal discourse on technological innovations is still dominated by ‘hard impacts’ such as quantifiable risks for health, safety and the environment. Furthermore, participants in socio-scientific discourses often underestimate their agency in influencing technological innovations, and at the same time overestimate their freedom of choice to use a technology. Past debates on technological innovations have shown how these debates were framed and often caught in fruitless discourse patterns or arguments. Interventionist STS research experiments with solutions to this problem. Assuming that an STS perspective is helpful in reframing and articulating socio-scientific classroom discourses, the case of genetic testing is used to explore this. An important positive ‘hard impact’ of genetic testing is disease prevention. However, this is put into perspective by addressing ‘soft impacts’ such as limited access to certain careers based on genetic risk and changes in the conception of health and the perception of responsibility for one’s health. Discussion stoppers such as ‘playing God’ or ‘We can’t stop technological advancement’ can be challenged through uncovering underlying assumptions. The use of narratives and future scenarios in classrooms seems fruitful in provoking imagination and engaging students in public debates on technological innovations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号