首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
教育   1篇
体育   3篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
This paper examines the reasons why long‐serving teachers remain in the teaching profession. Interest in teacher retention has grown in recent years, both in the UK and internationally, due to concerns over teacher shortage. However, most research on retention has focused on why teachers leave; this paper aims to fill the gap in our understanding of the positive reasons why long‐serving teachers stay in the profession, and how these reasons change over time. We define ‘long‐serving teachers’ as teachers who have taught for 10 years and more. We draw on a subset of data from an existing, broader study (Menzies et al., 2015 ) on why teachers enter and stay in the profession. In this paper, we draw on questionnaire findings from over 900 teachers with 0 to over 30 years’ teaching experience, and interviews with 14 long‐serving teachers, to understand why long‐serving teachers enter and, more importantly for our purposes, stay in teaching. We find that teachers’ motivational patterns are highly complex and influenced by school‐level and policy contexts. Nonetheless, two prominent retention factors are identified: teachers’ perceived professional mastery and altruistic reasons. Perceived professional mastery is particularly important due to its mutually reinforcing analytic relationships with other reasons. We find that teachers’ identification with intrinsic, altruistic and perceived professional mastery reasons become stronger with years of experience, but in some cases, paradoxically, so does their identification with extrinsic reasons. From our evidence, we suggest policy implications for enhancing the retention of long‐serving teachers.  相似文献   
2.
During tennis-specific movements, such as accelerating and side stepping, the dynamic traction provided by the shoe–surface combination plays an important role in the injury risk and performance of the player. Acrylic hard court tennis surfaces have been reported to have increased injury occurrence, partly caused by increased traction that developed at the shoe–surface interface. Often mechanical test methods used for the testing and categorisation of playing surfaces do not tend to simulate loads occurring during participation on the surface, and thus are unlikely to predict the human response to the surface. A traction testing device, discussed in this paper, has been used to mechanically measure the dynamic traction force between the shoe and the surface under a range of normal loading conditions that are relevant to real-life play. Acrylic hard court tennis surfaces generally have a rough surface topography, due to their sand and acrylic paint mixed top coating. Surface micro-roughness will influence the friction mechanisms present during viscoelastic contacts, as found in footwear–surface interactions. This paper aims to further understand the influence micro-roughness and normal force has on the dynamic traction that develops at the shoe–surface interface on acrylic hard court tennis surfaces. The micro-roughness and traction of a controlled set of acrylic hard court tennis surfaces have been measured. The relationships between micro-roughness, normal force, and traction force are discussed.  相似文献   
3.
The interaction between footwear and surfaces influences the forces experienced by tennis players. The purpose of this study was to investigate traction demand and kinematic adaptation during tennis-specific movements with changes in traction characteristics of surfaces. We hypothesised that players would increase the utilised coefficient of friction (horizontal to vertical ground reaction force ratio) when the shoe surface combination had a high coefficient of friction and flex their knee after contact to facilitate braking. Eight participants performed two separate movements, side jump out of stance and running forehand. Ground reaction force was measured and three-dimensional kinematic data were recorded. Clay surface and cushioned acrylic hard court (low vs. high shoe–surface friction) were used. The peak utilised coefficient of friction was greater on clay than the hard court. The knee was less flexed at impact on clay ( ? 5.6 ± 10.2°) and at peak flexion ( ? 13.1 ± 12.0°) during the running forehand. Our results indicate that tennis players adapt the level of utilised friction according to the characteristics of the surface, and this adaptation favours sliding on the low friction surface. Less knee flexion facilitates sliding on clay, whereas greater knee flexion contributes to braking on the hard court.  相似文献   
4.
This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (< 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players’ perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号