首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
体育   1篇
  2002年   1篇
排序方式: 共有1条查询结果,搜索用时 46 毫秒
1
1.
The purpose of this study was to develop a submaximal, 1.5-mile endurance test for college-aged students using walking, jogging, or running exercise. College students (N = 101: 52 men, 47 women), ages 18-26years, successfully completed the 1.5-mile test twice, and a maximal graded exercise test. Participants were instructed to achieve a "somewhat hard" exercise intensity (rating of perceived exertion = 13) and maintain a steady pace throughout each 1.5-mile test. Multiple linear regression generated the following prediction equation: VO2 max = 65.404 + 7.707 x gender (1 = male; 0 =female) - 0.159 x body mass (kg) - 0.843 x elapsed exercise time (min; walking, jogging orrunning). This equation shows acceptable validity (R = .86, SEE = 3.37 ml x kg(-1) min(-1)) similar to the accuracy of comparable field tests, and reliability (ICC = .93) is also comparable to similar models. The statistical shrinkage is minimal (R(press) = 0.85, SEE(press) = 3.51 ml x kg(-) x min(-1)); hence, it should provide comparable results when applied to other similar samples. A regression model (R =.90, and SEE = 2.87 ml x kg(-1) min(-1)) including exercise heart rate was also developed: VO2 max = 100.162 +/- 7.301 x gender(1 = male; 0 =female) - 0.164 x body mass (kg) - 1.273 x elapsed exercise time -0.156 x exercise heart rate, for those who have access to electronic heart rate monitors. This submaximal 1.5-mile test accurately predicts maximal oxygen uptake (VO2max) without measuring heart rate and is similar to the 1.5-mile run in that it allowsfor mass testing and requires only a flat, measured distance and a stopwatch. Further, it can accommodate a wide range of fitness levels (from walkers to runners).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号