首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
教育   3篇
  2000年   1篇
  1994年   1篇
  1987年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
一、方程f(x)~(1/2)+g(x)~(1/2)=k(k>0)表明,(f(x)~(1/4),g(x)~(1/4)为圆f(x)~(1/2)=k~(1/2)(cost)g(x)~(1/4)=k~(1/2)(sint)与倾角为t之径线的交点坐标,因而可设 f(x)=k~2cos~4t g(x)=k~2sin~4t’通过三角变换直接或间接地解得x。例1.解方程 2x-1~(1/2)+x+3~(1/2)=4 解:设 2x-1=16cos~4t x+3=16sin~4t(1/2相似文献   
3.
1765年,数学泰斗欧拉(L.Euler)首先发现:任意一个三角形的外接圆半径R、内切圆半径r与其两圆心距d恒满足关系R~2=d~2 2Rr, ①从而由d~2≥0,得R≥2r. ② 这就是众所周知的欧拉不等式. 1798年,欧拉的学生富斯(N·Fuss)又证明:同时有外接圆和内切圆的四边形,其外接圆半径R,内切圆半径r与其两圆心距d恒满足关系(1/(R d)~2) 1/(R-d)~2=1/r~2,R~2=d~2-r~2 r(r~2 4R~2)~(1/2).据此,由d~2≥0即可得R≥(2r)~(1/2). ③ 这便是所谓的富斯不等式. 1988年,刘健将②、③推广成:设双圆n边形(既有外接圆又有内切圆的n边形)的外接圆半径为R,内切圆半径为r,则R≥rsecπ/n. ④ 近年来,我国学者还相继给出④的多种证法,并有人将其延拓到一般多边形的情形. 我们追寻先达时贤之笔迹,通过深入分析研究发现,④可以进一步加强为  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号