首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
教育   3篇
科学研究   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three‐dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to Terminologia Anatomica. Because the cerebral models are fully segmented and labeled, our approach enables automatic and random atlas‐derived generation of questions to test location and naming of cerebral structures. This is done in four steps: test individualization by the instructor, test taking by the students at their convenience, automatic student assessment by the application, and communication of the individual assessment to the instructor. A computer‐based application with an interactive 3D atlas and a preliminary mobile‐based application were developed to realize this approach. The application works in two test modes: instructor and student. In the instructor mode, the instructor customizes the test by setting the scope of testing and student performance criteria, which takes a few seconds. In the student mode, the student is tested and automatically assessed. Self‐testing is also feasible at any time and pace. Our approach is automatic both with respect to test generation and student assessment. It is also objective, rapid, and customizable. We believe that this approach is novel from computer‐based, mobile‐based, and atlas‐assisted standpoints. Anat Sci Educ 2:244–252, 2009. © 2009 American Association of Anatomists.  相似文献   
3.
4.
We present a Life-Long Learning from Mistakes (3LM) algorithm for document classification, which could be used in various scenarios such as spam filtering, blog classification, and web resource categorization. We extend the ideas of online clustering and batch-mode centroid-based classification to online learning with negative feedback. The 3LM is a competitive learning algorithm, which avoids over-smoothing, characteristic of the centroid-based classifiers, by using a different class representative, which we call clusterhead. The clusterheads competing for vector-space dominance are drawn toward misclassified documents, eventually bringing the model to a “balanced state” for a fixed distribution of documents. Subsequently, the clusterheads oscillate between the misclassified documents, heuristically minimizing the rate of misclassifications, an NP-complete problem. Further, the 3LM algorithm prevents over-fitting by “leashing” the clusterheads to their respective centroids. A clusterhead provably converges if its class can be separated by a hyper-plane from all other classes. Lifelong learning with fixed learning rate allows 3LM to adapt to possibly changing distribution of the data and continually learn and unlearn document classes. We report on our experiments, which demonstrate high accuracy of document classification on Reuters21578, OHSUMED, and TREC07p-spam datasets. The 3LM algorithm did not show over-fitting, while consistently outperforming centroid-based, Naïve Bayes, C4.5, AdaBoost, kNN, and SVM whose accuracy had been reported on the same three corpora.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号