首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
教育   2篇
  2013年   2篇
排序方式: 共有2条查询结果,搜索用时 125 毫秒
1
1.
Robust maximum likelihood (ML) and categorical diagonally weighted least squares (cat-DWLS) estimation have both been proposed for use with categorized and nonnormally distributed data. This study compares results from the 2 methods in terms of parameter estimate and standard error bias, power, and Type I error control, with unadjusted ML and WLS estimation methods included for purposes of comparison. Conditions manipulated include model misspecification, level of asymmetry, level and categorization, sample size, and type and size of the model. Results indicate that cat-DWLS estimation method results in the least parameter estimate and standard error bias under the majority of conditions studied. Cat-DWLS parameter estimates and standard errors were generally the least affected by model misspecification of the estimation methods studied. Robust ML also performed well, yielding relatively unbiased parameter estimates and standard errors. However, both cat-DWLS and robust ML resulted in low power under conditions of high data asymmetry, small sample sizes, and mild model misspecification. For more optimal conditions, power for these estimators was adequate.  相似文献   
2.
This study compared diagonal weighted least squares robust estimation techniques available in 2 popular statistical programs: diagonal weighted least squares (DWLS; LISREL version 8.80) and weighted least squares–mean (WLSM) and weighted least squares—mean and variance adjusted (WLSMV; Mplus version 6.11). A 20-item confirmatory factor analysis was estimated using item-level ordered categorical data. Three different nonnormality conditions were applied to 2- to 7-category data with sample sizes of 200, 400, and 800. Convergence problems were seen with nonnormal data when DWLS was used with few categories. Both DWLS and WLSMV produced accurate parameter estimates; however, bias in standard errors of parameter estimates was extreme for select conditions when nonnormal data were present. The robust estimators generally reported acceptable model–data fit, unless few categories were used with nonnormal data at smaller sample sizes; WLSMV yielded better fit than WLSM for most indices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号