首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Control of PDE-ODE cascades with Neumann interconnections
Authors:Gian Antonio Susto  Miroslav Krstic
Institution:a Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093-0411, USA
b Department of Information Engineering, University of Padova, 35131 Padova ITA, Italy
Abstract:We extend several recent results on full-state feedback stabilization and state estimation of PDE-ODE cascades, where the PDEs are either of heat type or of wave type, from the previously considered cases where the interconnections are of Dirichlet type, to interconnections of Neumann type. The Neumann type interconnections constrain the PDE state to be subject to a Dirichlet boundary condition at the PDE-ODE interface, and employ the boundary value of the first spatial derivative of the PDE state to be the input to the ODE. In addition to considering heat-ODE and wave-ODE cascades, we also consider a cascade of a diffusion-convection PDE with an ODE, where the convection direction is “away” from the ODE. We refer to this case as a PDE-ODE cascade with “counter-convection.” This case is not only interesting because the PDE subsystem is unstable, but because the control signal is subject to competing effects of diffusion, which is in both directions in the one-dimensional domain, and counter-convection, which is in the direction that is opposite from the propagation direction of the standard delay (transport PDE) process. We rely on the diffusion process to propagate the control signal through the PDE towards the ODE, to stabilize the ODE.
Keywords:Delay systems  Distributed parameter systems  Backstepping  Stability  Cascade systems
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号