首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-throughput study of alpha-synuclein expression in yeast using microfluidics for control of local cellular microenvironment
Authors:Rosa Patrícia  Tenreiro Sandra  Chu Virginia  Outeiro Tiago F  Conde João Pedro
Abstract:Microfluidics is an emerging technology which allows the miniaturization, integration, and automation of fluid handling processes. Microfluidic systems offer low sample consumption, significantly reduced processing time, and the prospect of massive parallelization. A microfluidic platform was developed for the control of the soluble cellular microenvironment of Saccharomyces cerevisiae cells, which enabled high-throughput monitoring of the controlled expression of alpha-synuclein (aSyn), a protein involved in Parkinson's disease. Y-shaped structures were fabricated using particle desorption mass spectrometry-based soft-lithography techniques to generate biomolecular gradients along a microchannel. Cell traps integrated along the microchannel allowed the positioning and monitoring of cells in precise locations, where different, well-controlled chemical environments were established. S. cerevisiae cells genetically engineered to encode the fusion protein aSyn-GFP (green fluorescent protein) under the control of GAL1, a galactose inducible promoter, were loaded in the microfluidic structure. A galactose concentration gradient was established in the channel and a time-dependent aSyn-GFP expression was obtained as a function of the positioning of cells along the galactose gradient. Our results demonstrate the applicability of this microfluidic platform to the spatiotemporal control of cellular microenvironment and open a range of possibilities for the study of cellular processes based on single-cell analysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号