首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physiological determinants of elite mountain bike cross-country Olympic performance
Authors:Jacob Bejder  Thomas Christian Bonne  Michael Nyberg  Kim Anker Sjøberg
Institution:Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
Abstract:Detailed physiological phenotyping was hypothesized to have predictive value for Olympic distance cross-country mountain bike (XCO-MTB) performance. Additionally, mean (MPO) and peak power output (PPO) in 4 × 30 s all-out sprinting separated by 1 min was hypothesized as a simple measure with predictive value for XCO-MTB performance. Parameters indicative of body composition, cardiovascular function, power and strength were determined and related to XCO-MTB national championship performance (n = 11). Multiple linear regression demonstrated 98% of the variance (P < 0.001) in XCO-MTB performance (tXCO-MTB; min]) is explained by maximal oxygen uptake relative to body mass (VO2peak,rel; ml/kg/min]), 30 s all-out fatigue resistance (FI; %]) and with a minor contribution from quadriceps femoris maximal torque (Tmax; Nm]): tXCO-MTB = ?0.217× VO2peak,rel.–0.201× FI+ 0.012× Tmax+ 85.4. Parameters with no additional predictive value included hemoglobin mass, leg peak blood flow, femoral artery diameter, knee-extensor peak workload, jump height, quadriceps femoris maximal voluntary contraction force and rate of force development. Additionally, multiple linear regression demonstrated parameters obtained from 4x30s repeated sprinting explained 88% of XCO-MTB variance (P < 0.001) with tXCO-MTB = ?5.7× MPO+ 5.0× PPO+ 55.9. In conclusion, XCO-MTB performance is predictable from VO2peak,rel and 30 s all-out fatigue resistance. Additionally, power variables from a repeated sprint test provides a cost-effective way of monitoring athletes XCO-MTB performance.
Keywords:Performance prediction  multidimensional approach  cycling  XCO-MTB
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号