首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Undergraduate Research Student Self-Assessment (URSSA): Validation for Use in Program Evaluation
Authors:Timothy J Weston  Sandra L Laursen
Institution:*Alliance for Technology, Learning and Society, University of Colorado Boulder, Boulder, CO 80309;Ethnography & Evaluation Research, University of Colorado Boulder, Boulder, CO 80309
Abstract:This article examines the validity of the Undergraduate Research Student Self-Assessment (URSSA), a survey used to evaluate undergraduate research (UR) programs. The underlying structure of the survey was assessed with confirmatory factor analysis; also examined were correlations between different average scores, score reliability, and matches between numerical and textual item responses. The study found that four components of the survey represent separate but related constructs for cognitive skills and affective learning gains derived from the UR experience. Average scores from item blocks formed reliable but moderate to highly correlated composite measures. Additionally, some questions about student learning gains (meant to assess individual learning) correlated to ratings of satisfaction with external aspects of the research experience. The pattern of correlation among individual items suggests that items asking students to rate external aspects of their environment were more like satisfaction ratings than items that directly ask about student skills attainment. Finally, survey items asking about student aspirations to attend graduate school in science reflected inflated estimates of the proportions of students who had actually decided on graduate education after their UR experiences. Recommendations for revisions to the survey include clarified item wording and increasing discrimination between item blocks through reorganization.Undergraduate research (UR) experiences have long been an important component of science education at universities and colleges but have received greater attention in recent years, as they have been identified as important ways to strengthen preparation for advanced study and work in the science fields, especially among students from underrepresented minority groups (Tsui, 2007 ; Kuh, 2008 ). UR internships provide students with the opportunity to conduct authentic research in laboratories with scientist mentors, as students help design projects, gather and analyze data, and write up and present findings (Laursen et al., 2010 ). The promised benefits of UR experiences include both increased skills and greater familiarity with how science is practiced (Russell et al., 2007 ). While students learn the basics of scientific methods and laboratory skills, they are also exposed to the culture and norms of science (Carlone and Johnson, 2007 ; Hunter et al., 2007 ; Lopatto, 2010 ). Students learn about the day-to-day world of practicing science and are introduced to how scientists design studies, collect and analyze data, and communicate their research. After participating in UR, students may make more informed decisions about their future, and some may be more likely to decide to pursue graduate education in science, technology, engineering, and mathematics (STEM) disciplines (Bauer and Bennett, 2003 ; Russell et al., 2007 ; Eagan et al. 2013 ).While UR experiences potentially have many benefits for undergraduate students, assessing these benefits is challenging (Laursen, 2015 ). Large-scale research-based evaluation of the effects of UR is limited by a range of methodological problems (Eagan et al., 2013 ). True experimental studies are almost impossible to implement, since random assignment of students into UR programs is both logistically and ethically impractical, while many simple comparisons between UR and non-UR groups of students suffer from noncomparable groups and limited generalizability (Maton and Hrabowski, 2004 ). Survey studies often rely on poorly developed measures and use nonrepresentative samples, and large-scale survey research usually requires complex statistical models to control for student self-selection into UR programs (Eagan et al., 2013 ). For smaller-scale program evaluation, evaluators also encounter a number of measurement problems. Because of the wide range of disciplines, research topics, and methods, common standardized tests assessing laboratory skills and understandings across these disciplines are difficult to find. While faculty at individual sites may directly assess products, presentations, and behavior using authentic assessments such as portfolios, rubrics, and performance assessments, these assessments can be time-consuming and not easily comparable with similar efforts at other laboratories (Stokking et al., 2004 ; Kuh et al., 2014 ). Additionally, the affective outcomes of UR are not readily tapped by direct academic assessment, as many of the benefits found for students in UR, such as motivation, enculturation, and self-efficacy, are not measured by tests or other assessments (Carlone and Johnson, 2007 ). Other instruments for assessing UR outcomes, such as Lopatto’s SURE (Lopatto, 2010 ), focus on these affective outcomes rather than direct assessments of skills and cognitive gains.The size of most UR programs also makes assessment difficult. Research Experiences for Undergraduates (REUs), one mechanism by which UR programs may be organized within an institution, are funded by the National Science Foundation (NSF), but unlike many other educational programs at NSF (e.g., TUES) that require fully funded evaluations with multiple sources of evidence (Frechtling, 2010 ), REUs are generally so small that they cannot typically support this type of evaluation unless multiple programs pool their resources to provide adequate assessment. Informal UR experiences, offered to students by individual faculty within their own laboratories, are often more common but are typically not coordinated across departments or institutions or accountable to a central office or agency for assessment. Partly toward this end, the Undergraduate Research Student Self-Assessment (URSSA) was developed as a common assessment instrument that can be compared across multiple UR sites within or across institutions. It is meant to be used as one source of assessment information about UR sites and their students.The current research examines the validity of the URSSA in the context of its use as a self-report survey for UR programs and laboratories. Because the survey has been taken by more than 3400 students, we can test some aspects of how the survey is structured and how it functions. Assessing the validity of the URSSA for its intended use is a process of testing hypotheses about how well the survey represents its intended content. This ongoing process (Messick, 1993 ; Kane, 2001 ) involves gathering evidence from a range of sources to learn whether validity claims are supported by evidence and whether the survey results can be used confidently in specific contexts. For the URSSA, our method of inquiry focuses on how the survey is used to assess consortia of REU sites. In this context, survey results are used for quality assurance and comparisons of average ratings over years and as general indicators of program success in encouraging students to pursue graduate science education and scientific careers. Our research questions focus on the meaning and reliability of “core indicators” used to track self-reported learning gains in four areas and the ability of numerical items to capture student aspirations for future plans to attend graduate school in the sciences.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号