首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Salvinia-like slippery surface with stable and mobile water/air contact line
Authors:Xiaomei Li  Jinlong Yang  Kaixuan Lv  Periklis Papadopoulos  Jing Sun  Dehui Wang  Yanhua Zhao  Longquan Chen  Dapeng Wang  Zuankai Wang  Xu Deng
Abstract:Superhydrophobic surfaces are widely used in many industrial settings, and mainly consist of rough solid protrusions that entrap air to minimize the liquid/solid area. The stability of the superhydrophobic state favors relatively small spacing between protrusions. However, this in turn increases the lateral adhesion force that retards the mobility of drops. Here we propose a novel approach that optimizes both properties simultaneously. Inspired by the hydrophobic leaves of Salvinia molesta and the slippery Nepenthes pitcher plants, we designed a Salvinia-like slippery surface (SSS) consisting of protrusions with slippery heads. We demonstrate that compared to a control surface, the SSS exhibits increased stability against pressure and impact, and enhanced lateral mobility of water drops as well as reduced hydrodynamic drag. We also systematically investigate the wetting dynamics on the SSS. With its easy fabrication and enhanced performance, we envision that SSS will be useful in a variety of fields in industry.
Keywords:slippery Cassie state  Salvinia molesta  stability  low adhesion  drag reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号