首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of the appropriate time period between sampling and analyzing for automated urinalysis
Authors:Ramona C Dolscheid-Pommerich  Ute Klarmann-Schulz  Rupert Conrad  Birgit Stoffel-Wagner  Berndt Zur
Institution:1.Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany;2.Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany;3.Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany;4.Department of Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, Bonn, Germany
Abstract:

Introduction

Preanalytical specifications for urinalysis must be strictly adhered to avoid false interpretations. Aim of the present study is to examine whether the preanalytical factor ‘time point of analysis’ significantly influences stability of urine samples for urine particle and dipstick analysis.

Materials and methods

In 321 pathological spontaneous urine samples, urine dipstick (Urisys™2400, Combur-10-Test™strips, Roche Diagnostics, Mannheim, Germany) and particle analysis (UF-1000 i™, Sysmex, Norderstedt, Germany) were performed within 90 min, 120 min and 240 min after urine collection.

Results

For urine particle analysis, a significant increase in conductivity (120 vs. 90 min: P < 0.001, 240 vs. 90 min: P < 0.001) and a significant decrease in WBC (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), RBC (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), casts (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001) and epithelial cells (120 vs. 90 min P = 0.610, 240 vs. 90 min P = 0.041) were found. There were no significant changes for bacteria. Regarding urine dipstick analysis, misclassification rates between measurements were significant for pH (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), leukocytes (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), nitrite (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), protein (120 vs. 90 min P < 0.001, 240 vs. 90 min P<0.001), ketone (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), blood (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001), specific gravity (120 vs. 90 min P < 0.001, 240 vs. 90 min P < 0.001) and urobilinogen (120 vs. 90 min, P = 0.031). Misclassification rates were not significant for glucose and bilirubin.

Conclusion

Most parameters critically depend on the time window between sampling and analysis. Our study stresses the importance of adherence to early time points in urinalysis (within 90 min).Key words: urinalysis, automation, analytical sample preparation methods, flow cytometry, specimen handling
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号