首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron-hole hybridization in bilayer graphene
Authors:Siqi Wang  Mervin Zhao  Changjian Zhang  Sui Yang  Yuan Wang  Kenji Watanabe  Takashi Taniguchi  James Hone  Xiang Zhang
Institution:1. NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley, CA 94720, USA;2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;3. Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA;4. National Institute for Materials Science, Tsukuba, Japan;5. Faculties of Sciences and Engineering, University of Hong Kong, Hong Kong, China
Abstract:Band structure determines the motion of electrons in a solid, giving rise to exotic phenomena when properly engineered. Drawing an analogy between electrons and photons, artificially designed optical lattices indicate the possibility of a similar band modulation effect in graphene systems. Yet due to the fermionic nature of electrons, modulated electronic systems promise far richer categories of behaviors than those found in optical lattices. Here, we uncovered a strong modulation of electronic states in bilayer graphene subject to periodic potentials. We observed for the first time the hybridization of electron and hole sub-bands, resulting in local band gaps at both primary and secondary charge neutrality points. Such hybridization leads to the formation of flat bands, enabling the study of correlated effects in graphene systems. This work may provide a novel way to manipulate electronic states in layered systems, which is important to both fundamental research and application.
Keywords:band modulation  periodic potential  bilayer graphene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号