首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications
Authors:Wei Zhang  Yong Tian  Haili He  Li Xu  Wei Li  Dongyuan Zhao
Institution:Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, and iChEM, Fudan University, Shanghai 200433, China
Abstract:Because of their low cost, natural abundance, environmental benignity, plentiful polymorphs, good chemical stability and excellent optical properties, TiO2 materials are of great importance in the areas of physics, chemistry and material science. Much effort has been devoted to the synthesis of TiO2 nanomaterials for various applications. Among them, mesoporous TiO2 materials, especially with hierarchically porous structures, show great potential owing to their extraordinarily high surface areas, large pore volumes, tunable pore structures and morphologies, and nanoscale effects. This review aims to provide an overview of the synthesis and applications of hierarchically mesoporous TiO2 materials. In the first section, the general synthetic strategies for hierarchically mesoporous TiO2 materials are reviewed. After that, we summarize the architectures of hierarchically mesoporous TiO2 materials, including nanofibers, nanosheets, microparticles, films, spheres, core-shell and multi-level structures. At the same time, the corresponding mechanisms and the key factors for the controllable synthesis are highlighted. Following this, the applications of hierarchically mesoporous TiO2 materials in terms of energy storage and environmental protection, including photocatalytic degradation of pollutants, photocatalytic fuel generation, photoelectrochemical water splitting, catalyst support, lithium-ion batteries and sodium-ion batteries, are discussed. Finally, we outline the challenges and future directions of research and development in this area.
Keywords:hierarchically mesoporous  TiO2  energy  environment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号