首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Total sliding-mode-based particle swarm optimization control for linear induction motor
Authors:Rong-Jong Wai  Yeou-Fu LinKun-Lun Chuang
Institution:Department of Electrical Engineering, Yuan Ze University, Chung Li 320, Taiwan, ROC
Abstract:In this study, a total sliding-mode-based particle swarm optimization control (TSPSOC) scheme is designed for the periodic motion control of an indirect field-oriented linear induction motor (LIM) drive. First, an indirect field-oriented mechanism for a LIM drive is introduced to preserve the decoupling control characteristic. Then, the concept of total sliding-mode control (TSC) is incorporated into particle swarm optimization (PSO) to form an on-line TSPSOC framework for preserving the robust control characteristics and reducing the chattering control phenomena of TSC. Moreover, an adaptive inertial weight is devised to accelerate the searching speed effectively. In this control scheme, a PSO control system is utilized to be the major controller, and the stability can be indirectly ensured by the concept of TSC without strict constraint and detailed system knowledge. With the proposed TSPSOC system, the mover position of the controlled LIM drive possesses the advantages of favorable robust characteristic, control effort without chattering, and simple control framework. Numerical simulations and experimental results are given to verify the effectiveness of the proposed control scheme for the tracking of periodic reference trajectories. In addition, the superiority of the proposed TSPSOC scheme is indicated in comparison with the TSC, Petri fuzzy-neural-network control (PFNNC) and traditional fuzzy-neural-network control (TFNNC) systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号