首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Alloying is an effective way to manipulate the composition and physico-chemical properties of functional materials. We demonstrated the syntheses of alloyed Co x Ni1?x O nanocrystals using a nonaqueous approach, with x continuously tuned from 0 to 1 by varying the molar ratios of the cobalt precursor in the reagents. The morphological, structural, and compositional properties of the alloyed Co x Ni1?x O nanocrystals were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy dispersive X-ray spectroscopy (EDS). The results showed that the cobalt and nickel atoms were homogeneously distributed in the alloyed nanocrystals. The as-prepared Co x Ni1?x O nanocrystals can be applied as the hole-transporting layers in polymer light emitting diodes (PLEDs). Our study provides a good example for the syntheses of alloyed oxide nanocrystals with continuously tunable composition.  相似文献   

2.
研究目的:建立2000-2020年中国氮氧化物排放清单,了解中国主要行业和省份氮氧化物的排放情况,为评估氮氧化物的环境影响和制定相关减排政策提供依据。创新要点:分析了中国主要省份产业结构对氮氧化物排放量的影响;根据不同情景分析,预测2020年中国氮氧化物的排放量。研究方法:1.基于自底向上法,根据不同类型化石燃料的氮氧化物排放因子,结合化石燃料消耗量,建立中国2000-2010年氮氧化物排放清单;2.基于IPAT方程,并以中国2000--2010年的国内生产总值增长数据和氮氧化物排放量为依据,分三种情景,分析2011-2020年中国能源消耗和氮氧化物排放趋势。重要结论:2010年中国氮氧化物的排放量约是2000年的两倍:自2009年起,中国氮氧化物总排放量超过,二氧化硫总排放量;主要由于产业结构和地区生产总值的不同,中国东部和西部氮氧化物排放量有明显差异;制造业、电力行业和交通运输业是中国氮氧化物的主要排放源,其中交通运输业氮氧化物排放量呈现逐年增长趋势;预计2020年中国氮氧化物排放量为19.7Mt。  相似文献   

3.
In this study, a porous inserted regenerative thermal oxidizer (PRTO) system was developed for a 125 kW industrial copper-melting furnace, due to its advantages of low NOr emissions and high radiant efficiency. Zirconium dioxide (ZrOz) ce- ramic foams were placed into the combustion zone of a regenerative thermal oxidizer (RTO). Different performance characteris- tics of the RTO and PRTO systems, including pressure drop, temperature distribution, emissions, and energy efficiency, were evaluated to study the effects of the porous inserts on non-premixed CH4 combustion. It was found that the PRTO system achieved a significant reduction in the NOx emission level and a fuel saving of approximately 30% compared to the RTO system. It is most suitable for a lean combustion process at an equivalence ratio 〈0.4 with NOx and CO emission levels within 0.002%~).003% and 0.001%q3.002%, respectively.  相似文献   

4.
An experimental and model-based study of the effect of rich air/fuel ratios (AFRs) and temperature on the NOx slip of a lean NOx trap (LNT) was conducted in a lean-burn gasoline engine with an LNT after-treatment system. The emissions of the engine test bench and the inlet temperature of the LNT were used as the major inlet boundary conditions of the LNT. The engine periodically operated between a constant lean AFR of 23 with alterable rich AFRs of 10, 11, 12, 13, and 14. A decrease in the rich AFR of the engine strengthened the desorption atmosphere in the LNT, an effect closely related to the number of reductants, and further heightened the NOx desorption of the LNT, but with a penalty in fuel consumption. To eliminate that penalty, the inlet boundary conditions of the LNT were varied by adjusting the inlet temperature within a range between 200 ℃ and 400℃. An increase in inlet temperature heightened the NOx desorption of the LNT, and a NOx breakthrough occurred after the inlet tem- perature exceeded 390 ℃. To control NOx breakthrough, the inlet temperature can be adjusted to offset the strong desorption atmosphere in the LNT commonly created by a rich AFR.  相似文献   

5.
The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000 ℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in pro moting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.  相似文献   

6.
The motion of a projectile in a constant gravitational field is an age-old problem. If there is no resistive force, the problem is simple. However, with the intoduction of resistive forces, the complexity of the problem increases. Recently, there has been a growing interest in the problem of projectile motion under a resistive force proportional to the square of velocity. The problem for resistive force proportional to vv cannot be solved in closed analytical form. A series solution of the equation leads to divergent series for x (t) and y (t) for reasonable values of the initial speed and angle of projection. However, we demonstrate that by inverting the series for x (t), i.e., expressing t in terms of x, and substituting this in y (t) one can express y in terms of x which is a highly convergent series and one can obtain the path of projectile with a few terms of the series. We further demonstrate that one can obtain the path even with a few terms of the divergent series for x (t) and y (t) by using extrapolation methods.  相似文献   

7.
研究目的:预测机动车保有量;根据机动车污染特征,预测机动车污染物排放量;评估不同管理措施下机动车污染物的削减效果。创新要点:综合不同管理措施,整合评价多种管理措施并行条件下,机动车污染物排放量的削减情况。研究方法:通过长期能源替代计划(LEAP)模型对机动车保有量进行预测,相关排放因子采用校正的能源替代(AER)模型进行估算。最后设计四个情景模式,评估不同情景的减排效果,并与基础情景进行对比。重要结论:1.至2015年杭州市机动车将增长60.7%。2.淘汰超标机动车和提高机动车污染排放标准能有效控制CO和VOCs,而对NOx和PM的总量削减效果不明显。3.采用多种控制手段,如淘汰劣化超标机动车、提高机动车排放标准、提供低硫代燃油及引进能源替换型机动车将大大减少机动车污染物的排放量。  相似文献   

8.
Systematic studies of the transport properties of La0.67Ca0.33Mn1?xFe x O3 (x=0–0.3) systems showed that with increasing Fe-doping contentx the resistance increases and the insulator-metal transition temperature moves to lower temperature. For small doping content, the transport property satisfies metal transport behavior below the transition temperature, and above the transition temperature it satisfies the small polaron model. This behavior can be explained by Fe3+ doping, which easily forms Fe3+?O2??Mn4+ channel, suppressing the double exchange Mn3+?O2??Mn4+ channel and enhancing the spin scattering of Mn ions induced by antiferromagnetic clusters of Fe ions.  相似文献   

9.
In this study, we used a simple impregnation method to prepare Fe–Ce–O x catalysts and tested them regarding their low-temperature (200–300 °C) selective catalytic reduction (SCR) of NO using NH3. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO2/H2O resistance of the catalysts. The results showed that the FeCe(1:6)O x (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O x catalyst had the highest NO conversion with an activity of 94–99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h?1. The NO conversion for the FeCe(1:6)O x catalyst also reached 80–98% between 200 and 300 °C at a space velocity of 204,000 h?1. In addition, the FeCe(1:6)O x catalyst demonstrated good stability in a 10-h SCR reaction at 200–300 °C. Even in the presence of SO2 and H2O, the FeCe(1:6)O x catalyst exhibited good SCR performance.  相似文献   

10.
The interaction of two identical polar neutral molecules is modeled by two equal but oppositely charged point particles at a fixed distance of separation. The total Coulomb potential energy of this system is calculated as a function of this distance, x, and the distance, y, between their centers of mass. We find that when the y/x ratio is less than about 3.1619, the linear configuration has the lower energy, whereas when this ratio exceeds 3.1619, a stacked structure is more stable. Interestingly, when two real polar molecules, such as HF interact, neither of these structures are formed. It is ‘hydrogen bonded’. The NaF dimer on the other hand, has a global minimum as stacked structure at a y/x ratio of about 1, significantly smaller than 3.1619!  相似文献   

11.
This study aimed to establish a closed-cycle operation technology with high thermal efficiency in the thermochemical sulfur-iodine cycle for large-scale hydrogen production. A series of experimental studies were performed to investigate the occurrence of side reactions in both the H2SO4 and HI x phases from the H2SO4/HI/I2/H2O quaternary system within a constant temperature range of 323–363 K. The effects of iodine content, water content and reaction temperature on the side reactions were evaluated. The results showed that an increase in the reaction temperature promoted the side reactions. However, they were prevented as the iodine or water content increased. The occurrence of side reactions was faster in kinetics and more intense in the H2SO4 phase than in the HI x phase. The sulfur or hydrogen sulfide formation reaction or the reverse Bunsen reaction was validated under certain conditions.  相似文献   

12.
This paper presents a method using a large steady-state engine operation data matrix to provide necessary information for successfully training a predictive network, while at the same time eliminating errors produced by the dispersive effects of the emissions measurement system. The steady-state training conditions of compound fuel allow for the correlation of time-averaged in-cylinder combustion variables to the engine-out NO x and HC emissions. The error back-propagation neural network (EBP) is then capable of learning the relationships between these variables and the measured gaseous emissions, and then interpolating between steady-state points in the matrix. This method for NO x method for NO x and HC has been proved highly successful.  相似文献   

13.
A novel nano-TiO2-xNx composite was used as photocatalyst and added to the interior wall paint. The average diameter of nano-TiO2-xNx was about 20 nm. The majority crystal component of the sample was anatase and its optical absorption edge was shifted from 387 nm to 520 nm significantly. Nano-composite paint containing different dosage of nano- TiO2-xNx was investigated to study the properties of formaldehyde decomposition in the air. Testing results show that the formaldehyde decomposition ratio of that nano-paint can almost reach above 80%, especially for that of the paint containing 3% (w/w) nano-TiO2-xNx which exceeded 90%. The primary investigation on the reaction kinetics of photocatalytic formaldehyde decomposition indicated that the experiment data well fit the model of first-order reaction kinetics.  相似文献   

14.
He  Wei  Zhou  Lei  Tufail  Muhammad Khurram  Zhai  Pengfei  Yu  Peiwen  Chen  Renjie  Yang  Wen 《天津大学学报(英文版)》2021,27(6):423-433

All-solid-state lithium batteries (ASSLBs) have advantages of safety and high energy density, and they are expected to become the next generation of energy storage devices. Sulfide-based solid-state electrolytes (SSEs) with high ionic conductivity and low grain boundary resistance exhibit remarkable practical application. However, the space charge layer (SCL) effect and high interfacial resistance caused by a mismatch with the current commercial oxide cathodes restrict the development of sulfide SSEs and ASSLBs. This review summarizes the research progress on the SCL effect of sulfide SSEs and oxide cathodes, including the mechanism and direct evidence from high performance in-situ characterizations, as well as recent progress on the interfacial modification strategies to alleviate the SCL effect. This study provides future direction to stabilize the high performance sulfide-based solid electrolyte/oxide cathode interface for state-of-the-art ASSLBs and future all-SSE storage devices.

  相似文献   

15.
In iron ore sintering, the granulation process is the first and an important step. As the fine particles adhere to the coarse coke particles, the NO x emission generated from coke combustion may be expected to be influenced by that adhering layer. In this study, the granule size distributions and adhering ratios were evaluated by a granulation model. Granulation experiments were also carried out to obtain the granule size distribution and adhering ratio. The influence of the adhering layer on NO x emissions from the combustion of S type granules was studied by tube furnace experiments. Conclusions include: (1) The adhering ratio predicted from the granulation model can be used as a qualitative index for the evaluation of NO x emission from coke combustion. (2) The influence of the adhering layer on NO x emissions was enhanced with increasing adhering layer thickness of S type granules, and the NO x reduction was enhanced at higher temperatures (around 1373 K), but weakened at lower temperatures (around 1173 K).  相似文献   

16.
Cu(In,Ga)Se2 (CIGS) precursor films were deposited on Mo/glass by electrodeposition, and then annealed in Se vapor. The annealing temperature ranged from 450 °C to 580 °C, and two heating rates were selected. The results showed that the crystalline quality of the CIGS films and formation of the Cu-Se compound could be strongly influenced by the selenization temperature and heating rate. Raman spectroscopy and X-ray diffraction (XRD) analysis showed that when the selenization temperature was increased from 450 °C to 550 °C, the amount of binary CuSe phase decreased and the amount of Cu2Se increased. After annealing at 580 °C, a minimum amount of Cu2?xSe compounds was obtained and the degree of CIGS film crystallinity was higher than in other samples. The relationship between the properties of the film and the heating rate was studied. XRD and Raman spectra showed a decrease in the Cu2?xSe phase with increasing heating rate. Scanning electron microscopy (SEM) and XRD showed a remarkable increase in the grain size of CIGS during rapid heating.  相似文献   

17.
Lithium-zinc ferrite hollow microspheres (LiZn FHMs) containing special surface crystals were synthesized by self-reactive quenching technology. The samples were heat-treated at 1200 °C and held for 4 h. The influence of the heat-treatment on LiZn FHMs was studied. The results show that the surface of hollow microspheres is smooth without heat-treatment. The phase components are Fe2O3, Fe3O4, Li0.435Zn0.195Fe2.37O4, and Li0.5Fe2.5O4. The minimum reflectivity is ?13.5 dB, and the corresponding frequency is 7.5 GHz. The effective absorption band lower than ?10 dB is 6.2–8.5 GHz, and the bandwidth is 2.3 GHz. After heat-treatment, crystals on the surface of hollow microspheres grow significantly. Multiple-shape micro-nano crystals containing triangular, polygonal, and irregular crystal are generated. However, the phase composition does not change. The real part of the permittivity (ε′), the imaginary part of permittivity (ε″), the real part of permeability (μ′), and the imaginary part of permeability (μ″) all increase, and the microwave absorption properties at low frequency are significantly increased, with the absorption peak moving to a lower frequency range. The minimum reflectivity is ?26.5 dB, and the corresponding frequency changes to 3.4 GHz. The effective absorption band is 2.6–4 GHz, and the bandwidth is 1.4 GHz.  相似文献   

18.
In order to investigate the effects of methyl ester moiety on polycyclic aromatic hydrocarbons (PAHs) and NO x formation in biodiesel combustion, the combined models were developed based on detailed methyl butanoate (MB) oxidation model and n-butane model. Also, PAHs detailed reaction mechanism and NO x formation mechanism were added to the detailed models to form the combined models. The combined models were used to compare the combustion of n-butane and MB in a shock tube simulation to understand the effects of methyl ester moiety. The results indicated that compared with n-butane, the methyl ester moiety in MB leads to different reaction pathways, more CO and CO 2 formation and less formation of PAHs precursors such as ethylene and acetylene. In addition, a better chemical insight into the effects of methyl ester moiety on NO x formation was given, which will help to understand the combustion process of biodiesel.  相似文献   

19.
This paper reviews recent progress in electrophoretic deposition (EPD), particularly in solid oxide fuel cells (SOFCs). EPD is a simple, cost-effective, and geometrical flexible colloidal process. With its excellent control of thickness and other morphological characteristics, it is favored for the fabrication of SOFCs because each component layer of an SOFC has different requirements. However, the effectiveness of EPD is closely related to the suspension stability and EPD processing parameters. Maintaining a stable suspension and optimizing the EPD processing parameters are essential to achieve a dense and uniform deposition layer. Key parameters in maintaining the suspension stability are generally categorized into colloidal related parameters, including particle size and solid loading, and suspension media related parameters, including dielectric constant and conductivity. The effects of these parameters are often reflected by the zeta potential of the suspension, which can be manipulated by using charging agents to maintain a stable state. The deposition time and applied voltage are key parameters in optimizing the EPD process through their effects on the deposition rate. The effects of these parameters on particle surface charges and on the EPD mechanism are discussed.  相似文献   

20.
Positively charged composite nanofiltration (NF) membranes with good stability were prepared by dopamine (DA) assisted poly(ethylene imine) (PEI) deposition on a polysulfone ultrafiltration (UF) substrate followed by a cross-linking step. Attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electronic microscopy, and atom force microscopy were employed to characterize the surface chemistry and morphology of the obtained composite membranes. The DA and PEI co-deposition conditions were optimized based on knowledge of the co-deposition mechanism. The effects of the cross-linker concentration, cross-linking time, and reaction temperature on the permeation and separation properties of the prepared composite membranes were investigated in detail. Under optimized conditions, the MgCl2 rejection and permeation flux of the composite membrane reached 80.4% and 19.6 L/(m2·h), respectively (the feed was 0.01 mol/L of MgCl2 solution under a test pressure of 0.4 MPa). The rejection of various salts followed the order MgCl2≈CaCl2>MgSO4>NaCl>Na2SO4, suggesting the membranes were positively charged. The composite membranes showed good durability under alkaline aqueous conditions. This study provided new insights into the fabrication of mussel-inspired thin-film composite nanofiltration membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号