首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

2.
第9题 函数y=xcosx+sinx的图象大致为(). 解析 结合四个选项,会发现有三个选项均为奇函数,所以先考虑验证函数奇偶性,由f(-x)=-xcos(-x)+sin(-x)=-xcosx-sinx=-f(x),得该函数为奇函数,排除B选项;剩余的三个选项x<0时,符号有差异,所以验证符号:x∈(-π/2,0)时,cosx>0,x<0,sinx<0,xcosx<0,所以x<0时,y<0,排除C选项;剩余两个选项当x>0时,符号不同,所以取特值x=π,由πcosπ=-π,sinπ=0,得x=π时,y=-π排除A选项,答案为D.  相似文献   

3.
正弦函数y=Asin(ωx φ)是三角函数的重要内容,历年来都是高考命题的热点.现结合去年全国各地高考试题,根据考查正弦函数的不同内容,进行分类,并探讨其各自不同解法.1.确定函数最小正周期正弦函数y=Asin(ωx φ)的最小正周期为T=2π|ω|.【例1】已知函数y=12sinx πA(A>0)的最小正周期为3π,则A=.解:∵y=12sinx πA=12sin(1Ax πA)(A>0)∴其最小正周期为T=2π1A=2Aπ.则2Aπ=3π故A=32.【例2】函数f(x)=cos2x-23sinxcosx的最小正周期是.解:∵f(x)=cos2x-23sinxcosx=cos2x-3sin2x=-2sin(2x-π6)∴其最小正周期为T=2π2=π.2.求函数…  相似文献   

4.
在高中数学教学中,对于函数f(x)=sin x cosx的最小正周期的求法,总避开不提.问题的提法,多以选择题或是证明题的形式出现.如求证:f(x)=sin x cosx的最小正周期是2π.解题过程很简单:证明∵对任意的x∈R,都有f(x π2)=sin(x π2) cos(x π2)=cos x ?sin x=f(x).∴T=π2是函数f(x)=sin x cosx的周期.假设存在0相似文献   

5.
在很多实际问题中 ,我们要面对各式各样的最值问题 ,利用三角函数的最值 ,如正、余弦函数y=Asinx ,y =Acosx的有界性 ,数学中的均值不等式 ,函数的单调性等知识结合起来 ,常常能使问题化腐朽为神奇 ,在解题的思路、技巧上 ,有章可依、有规可寻 ,使问题得到快速、圆满的解决 现举数例加以说明 :例 1:设f (x) =2sinxcosx 52sinx cosx ,x∈ [0 ,π2 ],(1) ,求f (π12 ) ,(2 )求f (x)的最小值 例 2 :求f (θ) 4sinθcosθ - 1sinθ cosθ 1,θ∈ [0 ,π2 ]的最值 上两例是典型的三角函数最值应用题 ,其思路可能是利用正、余弦函数的有界性 |sinx|≤ 1,|cosx|≤ 1或利用均值不等式、或利用函数的单调性 ,经过适当三角变换 ,使问题得到解决 例 1求解如下 :f (x) =2sinxcosx 52sinx cosx =sin2x 522sin (x π4 ),当x =π12 时 ,f (π12 ) =sin π6 522sin π3=6 注意f (x) =1 2s...  相似文献   

6.
赵传义 《高中数理化》2008,(3):43-44,40,41
一、填空题(每题3分)1.已知cosθ>0,sinθ<0,则θ为第象限角.2.若点P(2,y)为角α终边上的一点,且tanα=2,则y=.3.已知α是第二象限角,且sinα=31,则cotα=.4.函数y=cos(2x 3π)的最小正周期是.5.已知sinx=54,cosx=53,则tan2x=.6.若y=sinx acosx为奇函数,则实数a=.7.已知函数f(x  相似文献   

7.
数学问答     
1.已知函数f(x)=tanx,x∈0,2π,并且x1≠x2,求证:12[f(x1) f(x2)]>fx12 x2.(maidewei@163.com)解答:∵tanx1 tanx2=csionsxx11 sinx2cosx2=scions(xx11c osxx2)2=cos(x12 sixn2()x 1c osx(2)x1-x2),而x1、x2∈0,2π且x1≠x2,∴2sin(x1 x2)>0,cosx1cosx2>0且0相似文献   

8.
一、配凑法形如f[g(x)]=F(x),可以从F(x)中凑出g(x),然后再直接把g(x)换成x即可.例1 (2006年全国卷二)若f(sinx)=3-cos2x,则f(cosx)= A.3-cos2x B.3-sin2x C.3 cos2x D.3 sin2x解(解法一)f(cosx)=f[sin(π/2-x)]=3-cos2(π/2-x)= 3-cos(π-2x)=3 cos2x.选C.  相似文献   

9.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

10.
我们知道,asinx+bcosx=a2+b2sin(x+φ),其中ab≠0,tanφ=ab,这个公式叫做辅助角公式.该公式可将异名三角函数化为同名三角函数,在解题中具有广泛的应用.现举例说明,以引起同学们的重视.一、求最值例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx的()(A)最大值是1,最小值是-1(B)最大值是1,最小值是-21(C)最大值是2,最小值是-2(D)解最大值是2,最小值是-1f(x)=sinx+3cosx=2sinx+3π,因为-2π≤x≤2π,所以-6π≤x+π3≤65π,所以-21≤sinx+3π≤1,所以-1≤f(x)≤2·故选(D).例2求函数y=sin2+2sinx·cosx+3cos2x的最小值,并写出使函数y取最小值的解x…  相似文献   

11.
正弦函数y=sinx和余弦函数y=cosx的图像都有对称轴,也都有对称中心。在常见的习题中有许多和对称轴。对称中心有关的习题。现简述如下:1 正余弦函数的对称轴正弦型函数y=sin(ωx (?))的对称轴,实质是使y=sin(ωx (?))=±1时的x值组成。y=cos(ωx (?))的对称轴实质是使y=  相似文献   

12.
<正>问题(2018年高考理科数学全国(Ⅰ)卷第16题)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是______.解法赏析思路1f(x)=2sinx+sin2x,由周期函数不妨设x∈[0,2π],f'(x)=2cosx+2cos2x=2(2cos2x=2(2cos2x+cosx-1)=2(2cosx-1)(cosx+1).  相似文献   

13.
一、选择题1.设sinα=-35,cosα=54,那么下列的点在角α的终边上的是().A.(-3,4)B.(-4,3)C.(4,-3)D.(3,4)2.下列四组函数f(x)与g(x),表示同一个函数的是().A.f(x)=sinx,g(x)=xsxinxB.f(x)=sinx,g(x)=1-cos2xC.f(x)=1,g(x)=sin2x+cos2xD.f(x)=1,g(x)=tanxcotx3.tanx+tany=0是tan(x+y)=0的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件4.要得到y=sin2x-π3的图象,只需将y=sin2x的图象().A.向左平移3πB.向右平移3πC.向左平移6πD.向右平移6π5.若α、β∈0,π2,则().A.cos(α+β)>cosα+cosβB.cos(α+β)>s…  相似文献   

14.
文 1、文 2分别利用图象法和均值代换法解决了一类在给定条件下三角函数取值范围问题 .本文利用函数的单调性来解决这类问题 (下面的例子都是文 1、2中的例题 ,以后不再说明 ) .例 1 已知 sin x+ 2 cos y=2 ,求 2 sin x+ cos y的取值范围 .解 由条件得 sin x=2 ( 1 - cos y) ,1∴ 2 sin x+ cos y=4 - 3cos y,2由 1 ,有 2 | ( 1 - cos y) | =| sin x|≤ 1 ,∴ 12 ≤cos y≤ 32 .又 | cos y|≤ 1 ,∴ 12 ≤cos y≤ 1 . 3令 t=cos y,则由 2 ,3有2 sin x+ cos y=4 - 3t,其中 t∈ [12 ,1 ].令 f( t) =4 - 3t ( 12 ≤ t≤ 1 ) .易知 f( t)在 [12…  相似文献   

15.
1.求方程的根 例1 求满足方程2sin2x sinx-sin2x=3cosx的锐角x的值.(03年湖南省高数竞) 分析 对于同一单调区间内的两个变量x1,x2,若f(x1)=f(x2),则必有x1=x2. 解 因为 x为锐角,所以 cosx≠0.方程两边同除以cosx得 2sinx·tanx tanx-2sinx=3,即 (2sinx 1)(tanx-1)=2.因为 函数f(x)=(2sinx 1)(tanx-1)在(0,π/4)内f(x)<0,在[π/4,π/2)内严格单调递  相似文献   

16.
例1求y=cosx+!3sinx,x∈π#6,23π$的值域.思路:形如y=asinx+bcosx的函数通常转化成y=!a2+b2sin(x+θ)的形式.解:y=cosx+!3sinx=2sin(x+π6).由x∈%π6,23π&,得x+π6∈%π3,56π&.∴21≤sin(x+π6)≤1,故1≤y≤2.即原函数的值域为[1,2].例2求y=sin2x-sinx+1,x∈π%3,34π&的值域.思路:形如y=asin2x+bsinx+c(a≠0)的函数,可利用换元法转化为在[-1,1]内的二次函数问题.即求y=at2+bt+c的值域.解:y=sin2x-sinx+1=(sinx-12)2+43.又x∈%π3,34π$,∴sinx∈!22,%$1.而(sinx-21)2+43在!22,%$1上单调递增,∴y∈3-!22,%$1.即所求值域为3-!22,%$1.例3…  相似文献   

17.
求形如“函数y=a-bsinxc-dcosx的最值”问题的解法较多,从这些解法中可体现出一些数学思想.一、数形结合思想例1.求函数y=1+sinx2+cosx的最小值和最大值.分析:因函数y=1+sinx2+cosx的定义域为R,所以把1+sinx2+cosx可以看为点(cosθ,sinθ)与点(-2,-1)所在直线的斜率.而点(cosθ,sinθ)的轨迹是圆x2+y2=1,因而问题就成为点(-2,-1)与圆x2+y2=1上的动点的连线的斜率最大值、最小值问题.易知,过点(-2,-1)向圆x2+y2=1所作的两条切线的斜率的最大值和最小值就是函数的最大值和最小值.如图,用平面几何的知识得出斜率kBD为所求的最小值,斜率kBC为…  相似文献   

18.
在浙江省88年下半年编印的一本高三年级升学复习资料上有这样一个题目:“判断函数y=(1 sinx-cosx)/(1 sinx cosx)的奇偶性”,并写明答案为奇函数。揣摩其答案得出的理由为: y=(1 sinx-cosx)/(1 sinx cosx)=(2sinx/2cosx/2 2sin~2x/2)/(2cosx/2sinx/2 2cos~2x/2)=(2sinx/2(cosx/2 sinx/2))/(2cosz/2(sinx/2 cosx/2))=tgx/2,∵f(-x)=tg(-x/2)=-tgx/2=-f(x),∴函数y=(1 sinx-cosx)/(1 sinx cosx)是奇函数。初看,解答正确.其实结论是错误的,原函数既非奇函数也非偶函数。之所以会产生这种情况,究其原因,一方面是现行教材中对函数奇偶性的定义及判断方法不够明确;另方面教师本身对函数奇偶性的定义及  相似文献   

19.
数学问答     
1.已知函数f(x)=(sinx cosx)22 2sin2x-cos22x,(1)求此函数的定义域、值域,(2)若f(x)=2,-4π相似文献   

20.
均值不等式是解决最值的重要工具,但由于其约束条件苛刻,不少同学在使用时常常顾此失彼,导致解题失误.下面以同学们易陷于的误区举例分析如下:一、忽视等号成立条件例1求y=sinxcosx+sinx1cosx(0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号