首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
例1已知函数f(x),当x、yR时,恒有f(x+y)=f(x)+f(y).试判断函数f(x)的奇偶性.解析令x=y=0得f(0)=f(0)+f(0),即f(0)=0;令y=-x得f(x)+f(-x)=f(0)=0,即f(-x)=-f(x).故函数f(x)是奇函数.例2判断函数y=1+sinx-cosx1+sinx+cosx的奇偶性.解析当x=π2时,y=1;当x=-π2时,y不存在.故所给函数的定义域关于原点不对称,函数是非奇非偶函数.注若函数的定义域关于原点不对称,则该函数不具有奇偶性.例3设函数f(x)=x2+|x-2|-1,xR,试判断函数f(…  相似文献   

2.
类型一若y=f(x)是定义在R上的函数,且f(x+k)=-f(x),则函数y=f(x)的周期为2k(k为非零常数).证明∵f(x+2k)=f犤(x+k)+k犦=-f(x+k)=f(x),∴函数y=f(x)的周期为2k.例1定义在R上的偶函数y=f(x)满足f(x+1)=-f(x),且在区间犤-1,0犦上单调递增.比较f(2√)、f(2)、f(3)的大小.解析∵f(x+1)=-f(x),∴由类型一知f(x)的周期为2.又因为f(2√)=f(-2+2√),f(2)=f(-2+2)=f(0),f(3)=f(-4+3)=f(-1),且-1<-2+2√<0,…  相似文献   

3.
一、观察法例1(2000年春季北京高考题)已知函数f(x)=ax3+bx2+cx+d的图象如下图,则()A.b(-∞,0)B.b(0,1)C.b(1,2)D.b(2,+∞)分析观察函数的图象,由图象过原点知d=0,又由图象过点(1,0)得f(1)=a+b+c=0.进一步观察f(x)的图象知f(-1)<0,即-a+b-c<0.两式相加得b<0,故选A.二、特殊值法例2设k是正实数,如果方程kxy+x2-x+4y-6=0表示两条直线,那么它们的图象是()分析由图象知有四个点可供我们考查.由A知图象过原点,而原点的坐标不满足方…  相似文献   

4.
我们把形如y=ax2+bx+cpx2+qx+r(a、b、c、p、q、rR,p、q不全为0)的函数称为“分式”函数.现在介绍求这种函数值域的方法.一、形如y=bx+cqx+r(q≠0)的函数值域的求法将函数解析式变形为y=bq-brq-cqx+r,当c=brq,即bq=cr(分子分母有共同的因式)时,y=bq,函数的值域为狖bq狚;当c≠brq,即bq≠cr时,由于函数y=brq-cqx+r的值域为所有非零实数,所以原函数的值域为y|y≠bq .例如,函数y=4x-22x-1的值域为 ,函数y=3x+42x-1的值域为y|y≠32 .二、形如y=ax2+bx+cpx2+qx+r(p…  相似文献   

5.
三角变换离不开角 ,角的范围与三角函数的性质、三角函数值的大小和符号密切相关 ,忽视对角的范围的研究和讨论就会引起错误 .一、忽视角的范围引起的错误例 1 函数 y =tan x1- tan2 x 的最小正周期为(   )( A) π4 .  ( B) π2 .  ( C)π.  ( D) 2π.错解  f ( x) =tan x1- tan2 x=12 tan2 x∴函数的周期为 π2 ,选 B.剖析 :f ( 0 ) =0 ,f ( π2 )不存在 ,故函数的最小正周期不是 π2 ,错误原因在于忽视了函数的定义域 (角的范围 ) .函数 y =tan x1- tan2 x定义域为 {x|x≠ kπ +π2且 x≠ kπ± π4 ,k∈ Z}.函数 y =12 tan2 x…  相似文献   

6.
一、求函数的最值例1设-π≤x≤π,求y=1+sinx+cosx+sinxcosx的最值.解设t=sinx+cosx,则sinxcosx=t2-12,y=1+t+t2-12=(t+1)22(-2√≤t≤2√).当t=-1,即x=π或x=-π时,ymin=0;当t=2√,即x=π4时,ymax=32+2√.二、求函数的值域例2求y=sin2x2(1+sinx+cosx)的值域.解设t=sinx+cosx,则sin2x=2sinxcosx=t2-1,y=t2-12(1+t)=t-12(-2√≤t≤2√且t≠-1),故所求函数的值域为犤-2√+12,-1)∪(-1,2√-12犦.三、求sinx+cos…  相似文献   

7.
一次函数是初中数学的重要内容之一,同学们在解题时往往会因考虑不周而出现错误.现就一次函数中的常见解题错误分类举例剖析.一、忽视一次项系数不为零导致错误例1已知y=(m2-1)x2+(m+1)x+m是一次函数,求m的值.错解:由题意,得m2-1=0,故m=±1.剖析:一次函数一般式为y=kx+b(k≠0),错解中忽略了k≠0的隐含条件.正确答案:m=1.例2已知一次函数y=mx-4的图象与反比例函数y=2x的图象有交点,求m的取值范围.错解:根据题意,可知方程组y=2x,y=mx- 有实数解.解此方程组得mx2-4x-2=0…  相似文献   

8.
一、巧解函数题例1求y=1-sinx2sinx-1的值域.解析由y=1-sinx2sinx-1得sinx≠12,y≠-12.又∵-1≤sinx≤1,∴-1≤sinx<12或12<sinx≤1.在双曲线上取点A(1,0),即sinx=1时,y=0.作出它的大致图象如下.显然函数的值域有两部分.当sinx=1时,y=0;当sinx=-1时,y=-23.∴函数的值域为(-∞,-23犦∪犤0,+∞).二、巧解复数题例2设|z-i|=1,argz=π4,求复数z.解析如图,|z-i|=1表示以点O1(0,1)为圆心、1为半径的圆,argz=π4表示射线y=x(x≥0).…  相似文献   

9.
一、从函数的定义域中挖掘隐含条件例1:求函数f(x)=12-ttaannx2x的最小正周期.错解:∵f(x)=12-ttaannx2x=tan2x,∴f(x)的最小正周期是T=!2.错因:忽视了原函数的定义域,误认为原函数与y=tan2x是同一类函数.我们在研究函数性质的问题时,要树立“定义域优先”的意识.必要时,可以画出函数图象.化简两函数知:(1)f(x)=12-ttaannx2x的定义域是:{xx≠k!+!2,x≠k2!+!4,k∈Z};(2)f(x)=tan2x的定义域是:{xx≠k2!+!4,k∈Z}.可见,两函数的定义域不同,它们不是同一函数.只有在f(x)=tan2x的后面加注了x≠k!+!2(k∈Z)后它们才是同一函数.挖掘出这一隐…  相似文献   

10.
中学生在数学练习中 ,有些问题稍不留意 ,就会出现错误 ,如何快捷有效地避免这种无形错误 ,本文作些分析探讨 1 关于函数的最小正周期例 1:求函数f (x) =2tanx1-tan2x的最小正周期错解 :原函数式化简为f (x) =tan2x ,所以周期为 π2正解 :显然原函数的定义域为 {x︱x≠kπ π2 且x≠ kπ2 π4 (k∈Z) } ,化简后 ,定义域为{x︱x≠kπ π4 (k∈Z) } ,定义域扩大了 ,所以周期未必相同 ,那怎样求周期呢 ,一般参考书的方法是 :首先作出y =tan2x的图象 ,如图 1:图 1  原函数的图象 ,只是去掉x≠kπ π2 (k∈Z)所对应的点 ,从去掉的几个点看 ,原函数的周期为π 这种方法虽然可以求出周期 ,但图形要画足够“宽” ,才能看出 ,不易把握 现在我们来看 ,有什么规律 ,不画出图象 ,就可直接求出周期 由函数的周期的定义容易证明 ,下面结论 :结论 1:若函数f (x)化简后的函数为f1(x) ,f1(x) ,的最小正周期为T1,函数f (x)的间断点的最小正周期为T2 ,则f (x)的最小正周期为T1,T2 的最小公倍...  相似文献   

11.
一、变成完全平方式的形式例1已知关于x的一元二次方程(k2-k-2)x2-(5k-1)x+6=0(k≠2,k≠-1).求证:这个方程一定有两个实数根.证明:∵k≠2,k≠-1,∴k2-k-2≠0.∵Δ=〔-(5k-1)〕2-4·6(k2-k-2)=k2+14k+49=(k+7)2≥0.∴该方程一定有两个实数根.二、变成完全平方式加一个非负数的形式例2已知:a、b、c是实数,且a=b+c+1.试证:两个方程x2+x+b=0和x2+ax+c=0至少有一个方程有两个不相等的实数根.证明:两个方程的判别式分别为Δ1=1-4b,Δ2=a…  相似文献   

12.
一、理解记忆法理解是记忆的前提和基础,只有理解了的东西才能记得准、记得牢.所以在学习数学知识时,一定要注意理解,弄懂后记忆.例如:正切函数tanα=yx的定义域为{α|α≠π2+kπ,k∈z},只有理解了当α=π2+kπ,(k∈z)时,角α终边上点的坐标(x,y)中横坐标x为0,定义中比值yx无意义,才能记住;又由于正割函数secα=rx定义中比值rx的分母与正切函数定义中比值yx的分母相同,所以它们的定义域也相同.二、图示记忆法图示记忆法就是通过图示的方法把记忆的知识“浓缩”,以减少记忆量.记忆的东西越少,就越容易记…  相似文献   

13.
一、解含参数的集合题例1设集合A=狖(x,y)|y=x2+ax+2狚,B=狖(x,y)|y=x+1,0≤x≤2狚,A∩B≠,求实数a的取值范围.解析依题意知x2+ax+2=x+1在犤0,2犦上有解,即x2+(a-1)x+1=0在犤0,2犦上有解.由x2+(a-1)x+1=0知x≠0.选a为主元,将a从方程中分离出来得a=-(x+1x)+1.要使方程在犤0,2犦上有解,只须a在-(x+1x)+1的取值范围内.因为x+1x≥2,故a=-(x+1x)+1≤-1,即a的取值范围为a≤-1.二、解含参数的三角题例2关于x的方程sin2x+acosx-2a…  相似文献   

14.
一、变函数例1(1995年全国高考题)函数y=4sin(3x+π4)+3cos(3x+π4)的最小正周期是()A.6πB.2πC.2π3D.π3解用辅助角法将原函数变为y=5sin(3x+π4+)(其中=arctan34),所以T=23π.选C.二、变角根据角的积、差、倍、半、互补、互余关系和问题的实际情况,对角进行变换,往往可使问题顺利得到解决.常用的变换有:2α=(α+β)+(α-β),β=(α+β)-α=α-(α-β),π4+α2=(π2+α)/2,π4+α=π2-(π4-α).例2已知sin(x-y)·cosx-co…  相似文献   

15.
若函数f(x)在含x0的某开区间(a,b)内具有一直到n+1阶导数,即:f∈Dn+1(a,b),那么对于x∈(a,b),有:f(x)=nk=0∑f(k)(x0)k。(x-x0)k+Rn(x)(1)记Pn(x)=nk=0∑f(k)(x0)k。(x-x0)k(2)且Rn(x)=f(n+1)(ξ)(n+1)。(x-x0)n+1(ξ介于x与x0之间)(3)称(1)式为f(x)在点x0处的关于(x-x0)的n阶泰勒公式;称(2)为f(x)的n阶泰勒多项式;称(3)为f(x)的拉格朗日型余项。泰勒公式是微分学中很重要的一个公式。本文试举几例,说明公式的应用。1、求极…  相似文献   

16.
二次函数是初中数学重点内容之一.复习时,既要掌握二次函数的图象及性质,更要注重它的应用.任何二次函数y=ax2+bx+c(a≠0)通过配方,总可以变成y=a(x+b2a)2+4ac-b24a的形式.由于它的图象是抛物线,故可知:(1)抛物线以直线x=-b2a为对称轴;(2)抛物线的顶点是(-b2a,4ac-b24a);(3)当a>0时,抛物线开口向上,在x=-b2a处取得函数最小值,y最小=4ac-b24a;当a<0时,抛物线开口向下,在x=-b2a处函数有最大值,y最大=4ac-b24a.学习的目的在于应用.能否运用二次函数解决实际问…  相似文献   

17.
一、含抽象函数的不等式的解法解这类不等式,应充分利用函数的单调性,想方设法去掉“f”,构成不含“f”的不等式再求解.例1已知函数f(x)=ax2+bx+c(a<0)对于任意实数x恒有f(2+x)=f(2-x)成立.解不等式f(1-2x2)>f(1+2x-x2).解析∵a<0,∴f(x)的图象开口向下,其对称轴方程为x=2,故f(x)在(-∞,2犦上单调递增,而在犤2,+∞)上单调递减.∵1-2x2≤1<2,1+2x-x2=2-(x-1)2≤2,∴(1-2x2)与(1+2x-x2)的值在区间(-∞,2犦上.故原不等式可化为1-2x…  相似文献   

18.
一、观察法根据完全平方数、算术根和绝对值都是非负数的特点以及函数的图象、性质,凭观察能直接得到一些简单的复合函数的值域.例1求函数y=x+1√-x-1√的值域.解析将y=x+1√-x-1√变形得y=2x+1√+x-1√.易知此函数在区间犤1,+∞)上是减函数.当x=1时,ymax=2√.又∵x+1√>x-1√,∴y>0.∴函数的值域为(0,2√犦.二、配方法例2求函数y=-x2-6x-5√的值域.解析∵-x2-6x-5≥0,∴-5≤x≤-1.∴当-5≤x≤-1时,-x2-6x-5=-(x+3)2+4≤4,其中当x=-3时取…  相似文献   

19.
方程与函数是一对具有密切联系的数学概念,一些方程用常规解法受阻时,可通过构造函数,运用函数思想加以解决,下面举例说明.■1.利用函数的定义域解方程.犤例1犦解方程42x-3√+43-2x√=|x-32|.分析:本题若采用乘方去根号的方法,会觉得束手无策.通过构造函数,利用函数的定义域,可迅速找到解决问题的钥匙.:构造函数f(x)=42x-3+43-2x,g(x)=|x-3|,因为函数f(x)的解:构造函数f(x)=42x-3√+43-2x√,g(x)=|x-32|,因为函数f(x)的定义域为狖x|x=32狚,而当x=3…  相似文献   

20.
在求函数f(x)=f1(x)+f2(x)的最值时,如果f1(x)与f2(x)的单调性不一致,就难以直接应用函数的单调性求解,这时我们可以构造一个与f(x)相关且单调性容易确定的函数g(x),利用函数的单调性求出g(x)的最值,再求f(x)的最值.例1求函数f(x)=x2+1√-x(x≥0)的最大值.解析因x2+1√与-x在犤0,+∞)上的单调性不一致,故f(x)的单调性不易观察,此时可将f(x)进行分子有理化,变形为f(x)=1x2+1√+x.易知:g(x)=x2+1√+x在犤0,+∞)上单调递增,∴犤g(x)犦min=g(0)=1,∴…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号