首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
已知两圆方程:⊙O1:x2 y2 D1x E1y F1=0,⊙O2:x2 y2 D2x E2y F2=0(其中两圆不共圆心,将两圆方程左右分别相减得l:(D1-D2)x (E1-E2)y (F1-F2)=0.结论1当两圆相交时,l即为公共弦所在的直线方程.不妨设两圆的交点为A、B,则A、B一定同时满足⊙O1和⊙O2的方程,故A、B必定满足两圆方程相减所得的直线方程l,由两点确定一条直线,l即为公共弦AB所在直线方程.结论2当两圆相切时,l即为公切线方程.公切点为P,则P同时满足两圆方程,故P一定在l上,而l的一个方向向量为a=(E1-E2,D2-D1),两圆圆心连线所在直线的一个方向向量为b=(D2-D1,E2-E1).…  相似文献   

2.
最近,我听了一位教师课题为《曲线方程的求法》的一节课.其中一道例题:求圆心在(2,1),且与x2+y2?3x=0的公共弦所在直线过点(5,?2)的圆的方程.解由已知可设圆的方程为x2+y2?4x?2y+F=0.(1)又x2+y2?3x=0,(2)(1)?(2)得?x?2y+F=0.而直线?x?2y+F=0过点(5,?2),把(5,?2)代入?x?2y+F=0,得F=1.因此所求圆的方程为:x2+y2?4x?2y+1=0.评课会上,有人提出:(1)?(2)所得?x?2y+F=0一定是相交弦吗?若不是,它又是什么呢?本文就此展开讨论.不失一般性,设两个不同的圆22O1:x+y+D1x+E1y+F1=022(D1+E1?4F1>0).(3)22O2:x+y+D2x+E2y+F2=022(D2+E2?4F2>0).(4)(3…  相似文献   

3.
1.问题背景 文[1]及文[2]讨论了⊙C1:x2+y2+D1x+E1y+F1=0及⊙C2:x2+y2+D2x+E2y+F2=0无公共点时,方程x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+ F2)=0的意义,但均没有指明方程表示何种曲线. 本文试图通过对方程x2+ y2+ Dx+Ey+F+λ(Ax+By+C)=0及x2+ y2+ D1x+E1y+F1+λ(x2+ y2+ D2x+E2y+ F2)=0的分析,从而阐明:当直线l与⊙M及⊙C1与⊙C2相交(以下简称“相交圆系”)时,上述方程一定表示圆;当直线l与⊙M及⊙C1与⊙C2不相交(以下简称“非相交圆系”)时,上述方程可能表示何种曲线.  相似文献   

4.
对于有些解析几何题,正面思考或按常规方法求解较难时,若能利用圆锥曲线系,巧设未知数,往往能起到事半功倍的效果,下举例说明.一、得用共交点的圆锥曲线系解题一般地过圆锥曲线C1:f(x,y)=0与圆锥曲线C2:g(x,y)=0的交点的圆锥曲线系方程都可以表示成:f(x,y)+λg(x,y)=0(λ≠-1)(不包括圆锥曲线C2),如过圆C1:x2+y2+D1x+E1y+F=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的圆系方程为:x2+y2+D1x+E1y+F+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).例1已知圆C1:x2+y2+3x+4y+3=0,圆C2:x2+y2+4x+5y-1=0,求过已知两圆的交点,且过原点的圆的方程.解由已知不妨设过已知两圆的交点圆的方程为:x2+y2+3x+4y+3+λ(x2+y2+4x+5y-1)=0(λ≠-1).又圆过原点,将(0,0)代入圆方程可解得λ=3,从而所求的方程为:4x2+4y2+15x+19y=0.  相似文献   

5.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

6.
葛海燕 《数学教学》2006,(5):30-31,6
命题:经过两圆C1:x2 y2 D1x E1y F1=0与C2:x2 y2 D2x E2y F2=0 的交点的圆的方程可以设为:x2 y2 D1x Eay F1 λ(x2 y2 D2x E2y F2)= 0(λ∈R且λ≠-1)……………………………(1) 在求过两已知圆交点的圆的方程时,我告诉学生可用上述命题来解题,这样可避免求两圆的交点.学生为该解法的美妙喝彩的同时提出了两  相似文献   

7.
把圆C1:x2 y2 D1x E1y F1=0(其中D12 E12-4F1>0)和圆C2:x2 y2 D2x E2y F2=0(其中D22 E22-4F2>0)的方程相减,便得到2圆的根轴l的方程为(D1-D2)x (E1-E2)y (F1-F2)=0·①人们已经证明:(1)到圆C1和圆C2的切线长相等的动点都在其根轴l上;(2)当2圆C1和C2相交时,根轴l就是2圆C1和C2的  相似文献   

8.
<正>圆的一般式方程C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).当点P(x0,y0)不在圆C上时,x20+y20+Dx0+Ey0+F≠0,该数值有何几何意义呢?经过探索,我们发现结论已知圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),点P(x0,y0).(1)点当P在圆外时,切线PA切圆于点A,则切线长  相似文献   

9.
在直线和圆的教学过程中遇到这样一个问题 :已知圆 C1 :x2 + y2 -2 x + 10 y -2 4=0 ,圆 C2 :x2 + y2 + 2 x + 2 y -8=0 ,求经过两圆交点 A、B的直线 l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据直线方程的两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 -2 x + 10 y -2 4=0  (1)x2 + y2 + 2 x + 2 y -8=0   (2 )(1) -(2 )得 :-4 x + 8y -16=0 ,即x -2 y + 4=0 ,变形得 :x =2 y -4 (3 )将 (3 )代入 (2 )化简整理得 :y2 -2 y =0 ,解得 :y1 =0 ,y…  相似文献   

10.
一、选择题(每小题5分,共60分)1.过点M(2,1)的直线l与x、y轴分别相交于P、Q两点,且使P M=M Q,则直线l的方程是()A.x-2y-5=0 B.2x-y-3=0 C.2x y-5=0 D.x 2y-4=02.若直线l:y=kx-3姨与直线2x 3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是()A.[π6,π3) B.(π6,π2) C.(π3,π2) D.[π6,π2]3.设m、n∈R,m≠n且mn≠0,则方程nx-y m=0和方程mx2-ny2=mn在同一坐标系下的图象大致是()4.若直线ax by=4与圆C:x2 y2=4有两个不同交点,则点P(a,b)与圆C的位置关系是()A.在圆内B.在圆上C.在圆外D.不确定5.我国发…  相似文献   

11.
定理:过圆锥曲线Φ:Φ(x,y)=Ax2+Bxy+Cy2+Dx+Ey+F=0(A+C≠0)上的一定点P0(x0,y0)引两条互相垂直的弦P0P1、P0P2,则直角弦过定点N(xo-ΦA+C,y0-ΦA+C),分别以P0P1与P0P2为直径的两圆交点的轨迹方程是:[x-x0+Φ2(A+C)]2+[y-yo+Φ22(A+C)]2=Φ21+Φ224(A+C)2.其中Φ1=Φ1x=2Axo+Byo+D,Φ2=Φ1y=Bxo+2Cyo+E.证明:作平移变换x=x'+x0,y=y'+y0,因P0(x0,y0)在曲线上,所以Ax20+Bx0y0+F=0,曲线Φ的方程变为:Ax'2+Bx'y'+Cy'2+(2Axo+Byo+D)x'+(Bxo+2Cyo+E)y'〕=0(1)设角弦P1P2的方程为Px'+qy'=1(2)由(1)、(2)式构造齐次方程,得Ax'2…  相似文献   

12.
<正>一、基础知识,要点回顾1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(xa2)2+(y-b2)2=r22(r2>0).二、题型分类,深度剖析题型一:直线与圆的位置关系例1已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;  相似文献   

13.
在直线和圆的教学过程中遇到这样一个问题 :已知圆C1:x2 + y2 - 2x + 10 y- 2 4 =0 ,圆C2 :x2 +y2 + 2x + 2 y- 8=0 ,求经过两圆交点A、B的直线l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 - 2x + 10 y- 2 4 =0 ,(1)x2 + y2 + 2x + 2 y- 8=0 . (2 )(1) - (2 ) ,得- 4x+ 8y - 16 =0 ,即x- 2 y + 4=0 ,变形得 x=2 y- 4. (3)将 (3)代入 (2 )化简整理 ,得y2 - 2 y =0 ,解得 y1=0 ,y2 =2 .将 y1=0 ,y2 =2…  相似文献   

14.
正问题:如图1,已知圆C:x2+y2=r2与直线l:y=kx+m没有公共点,设点P为直线l上的动点,过点P作圆C的两条切线,A、B为切点。证明:直线lAB恒定过点Q。分析:利用我们常用的一个结论:若点P(x0,y0)是圆x2+y2=r2外一点,则过点P作圆的两条切线,切点分别为A、B,则过A、B两点的直线方程为:x0·x+y0·y=r2。  相似文献   

15.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

16.
与两直线位置关系有关的试题在高考中一般以选择题的形式出现,难度中等,但有一些陷阱,稍不留意,就会陷入.一、忽视概念例1已知直线l1:x+my+6=0与l2:(m-2)x+3y+2m=0平行,则m的值为()A.3或-1B.-1C.3D.-3或1错解由已知得l1∥l2,m≠0,m-2≠0,且-m1=-m3-2,解得m=3或m=-1.选A.剖析两直线平行指的是两条不重合的直线平行,要跳出陷阱,可在解题后进行验证.当m=-1时,两条直线是重合的,故舍去.应选C.二、忽视斜率不存在例2经过点(1,0)且与直线y=-x+3成45°角的直线方程是()A.y=0B.x=0C.x=1D.y=0或x=1错解设所求方程为y=k(x-1),由1k+k-·(-(1-1))=ta…  相似文献   

17.
命题 :设点 P(x0 ,y0 ) ,⊙ O:x2 + y2 =r2 ,直线 l:x0 x + y0 y =r2则 1当点 P在圆上时 ,直线 l与⊙ O相切 ;2当点 P在圆外时 ,直线 l与⊙ O相交 ;3当点 P在圆内时 ,直线 l与⊙ O相离 .1 证明在直线 l上任取一点 Q(x,y) ,因为向量 OP =(x0 ,y0 ) ,OQ =(x,y)所以 OP .OQ =x0 x + y0 y =r2即 | OP| .| OQ| .cos∠ POQ =r2因为 l的一个方向向量 v=(-y0 ,x0 )所以 v.OP =0 OP⊥ l故圆心 O到 l的距离d =| OQ| .cos∠ POQ =r2| OP|| OP| >r时 ,d r;故命题为真 .2 画法已知点 P和⊙ …  相似文献   

18.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

19.
内容概述 具有某种性质的直线(圆)的集合叫直线(圆)系.通常方程中含有一个或几个参变数. 1.直线系常见类型 (1)过定点(a,b)的直线系为:λ1(y-b)+λ2(x-a)=0,其中λ1、λ2为参数 (2)与直线Ax+By+C=0平行的直线系为:Ax+By+λ=0,(λ≠C,λ为参数) (3)与直线Ax + By + C=0垂直的直线系为:Bx-Ay+λ=0(其中λ为参数) (4)若直线l1与l2的一般式分别为f1(x,y)=0,f2(x,y)=0,则曲线系:λ1f1(x,y)+λf2(x,y)=0(λi为参数)  相似文献   

20.
1.光的反射例 1 自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在的直线方程. (89高考) 解圆方程的标准形式是(x-2)2+(y-2)2=1. 设光线l所在的直线方程是 y-3=k(x+3) (斜率k待定)由题意知k≠0,于是l的反射点的坐标是(-3/k-3,0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号