首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二次函数与一元二次方程之间有着密切的联系.在二次函数y=ax~2+bx+c(a≠0)中.令y=0,即得一元二次方程ax~2+bx+c=0.若此时方程有实数根,则此实数根就是二次函数图象与x轴交点的横坐标.从这个基本事实出发,即可得到如下一些基本关系: 1.判别二次函数图象与x轴有无交点,可运用相应的一元二次方程根的判别式△=b~2-4ac,即  相似文献   

2.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

3.
一元二次方程ax~2 bx c=0(a≠0)是初中代数的重点内容,除了求根公式和韦达定理(根与系数关系)外,我们可进一步推得如下有用定理设x_1、x_1是方程ax~2 bx C=0(C≠0)的两根,则有|x_1-x_2|=△~(1/△)|a|(△=b~2-4ac)(*) (*)式的证明很简单,利用求根公式即可.但它的作用却不可小看,特别是用它求二次函数y=ax~2 bx C与x轴两个交点之间的距离较为简捷.  相似文献   

4.
二次函数y=ax~2+bx+c(a≠0),当函数值y=0时,ax~2+bx+c=0就是一个一元二次方程.换句话说,一元二次方程的根即是二次函数.y=ax~2十bx+c的函数值为零时相应的自变量的值.因此,我们可以这样求解一元二次方程ax~2+bx+c=0(a≠0):  相似文献   

5.
周知,一元二次方程ax~2÷bx c=0(a≠0)的根与二次函数f(x)=ax~2 bx c(a≠0)的图象之间有着密切的联系。在探求二次函数的图象与x轴有无交点的的问题中常利用一元二次方程的根的情况来考察;反之,也可以从二次函数的图象的某些特征来考察一元二次方程的根的情况。本文对系数含参数的一元二次方程已知根的某些性质,利用二次函数图象的特征来求出参数这个问题作一探讨。 例1 已知关于x的方程2x~2-6x 3m=0的两个实数根都大于1,求m的取值范围。 分析:学生往往用韦达定理来解如下: 设方程2x~2-6x 3m=0的两根为x_1、x_2。  相似文献   

6.
正一元二次方程以及二次函数是九年级的重要内容,它们之间联系紧密。我现对它们的关系加以总结、归纳,来帮助学生学习和复习。二次函数通用解析式为:y=ax2+bx+c(a、b、c为常数,a≠0),一元二次方程一般形式为ax2+bx+c=0(a、b、c为常数,a≠0),单从形成上看就很像。当二次函数的值为零时,也就是说求解二次函数与x轴交点问题时,可转化为一元二次方程来解决。一、一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c图像与x轴的交点1.△0时,方程有两个不相等的实数根x1、x2,二次函数与x轴有两个不同的交点,其  相似文献   

7.
<正>我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c (a≠0)的图象与x轴交点的横坐标.在求解相关问题时,它们之间的这种关系如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.下面举例说明.一、判断二次函数图象与x轴的交点情况  相似文献   

8.
<正>一元二次方程ax2+bx+c=0的根是二次函数y=ax2+bx+c=0的根是二次函数y=ax2+bx+c(a≠0)的零点,即抛物线与x轴交点的横坐标,关于一元二次方程ax2+bx+c(a≠0)的零点,即抛物线与x轴交点的横坐标,关于一元二次方程ax2+bx+c=0根的分布情况是同学们学习的难点,我结合二次函数图像,对一元二次方程根的分布问题进行了一些探讨和总结。设一元二次方程ax2+bx+c=0根的分布情况是同学们学习的难点,我结合二次函数图像,对一元二次方程根的分布问题进行了一些探讨和总结。设一元二次方程ax2+bx+c=0的两个  相似文献   

9.
由于实系数一元二次方程ax~2+bx+c=0(a≠0) ①的根的几何表示通常是借助抛物线y=ax~2+6x+c与 x 轴的交点实现的,因此一元二次方程①的虚根在坐标平面上的分布规律被了解得较少,影响到对一元二次方程性质的全面掌握。  相似文献   

10.
<正>二次函数与一元二次方程是数学的基础知识,它们之间具有千丝万缕的联系。二次函数y=ax~2+bx+c(a≠0)的图像与x轴有交点时,交点横坐标的值就是方程ax~2+bx+c=0(a≠0)的根。在一元二次方程中,当b~2-4ac>0时,方程有两个不相等的实数根;当b~2-4ac=0时,方程有两个相等的实数根;当b~2-4ac<0时,方程无实数根。其对应的二次函数图像与x轴分别有两个交点、一个交点和无交点。一、二次函数的交点问题  相似文献   

11.
二次函数与一元二次方程之间有着密切的联系. 在二次函数y=ax2 bx c(a≠0)中,令y=0,即得一元二次方程ax2 bx c=0.若此时方程有实数根,则此实数根就是二次函数图象与x轴交点的横坐标.从这个基本事实出发,即可得到如下一些基本关系: 1.判别二次函数图象与x轴有无交点,可运用相应的一元二次方程根的  相似文献   

12.
为了二次函数都知道:二次函数y=ax2+bx+c(a、b、c为常数,a≠0),当y=0时,则此函数形式化为ax2+bx+c=0(a≠0).即二次函数就化为一元二次方程了。所以一元二次方程实际上就是二次函数的特殊形式。因此,二次函数与x轴的交点问题就可以用一元二次方程根的分布和判定定理来解决。下面我们就用例子来谈谈二次函数与x轴的交点。  相似文献   

13.
陈宝义  李培华 《初中生》2015,(36):26-27
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)和一元二次方程ax2+bx+c=0有着密切的联系.对于二次函数或一元二次方程问题,我们依据题目的特征,灵活处理,则能使某些问题得到简捷、巧妙的解决. 抛物线y=ax2+bx+c与x轴的交点、一元二次方程ax2+bx+c=0的根、判别式△=b2-4ac的符号关系如下表: 一、求方程的根 例1(2014年柳州卷)小兰画了y=x2+ax+b的图像如图1所示,则关于x的方程x2+ax+b =0的解是().  相似文献   

14.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

15.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

16.
《中学生数理化》2010,(1):41-42,45
知识梳理 1.二次函数与一元二次方程之间的关系. (1)抛物线y=ax^2+bx+c(a≠0)与x轴交点的横坐标就是一元二次方程ax^2+bx+c=0的根. (2)一元二次方程ax^2+bx+c=0的根可以看做抛物线y=ax^2与直线y=-bx-c交点的横坐标.  相似文献   

17.
实系数一元二次方程ax~2+bx+c=0(其中a≠0)的判别式Δ=b~2-4ac,与方程的根,有下列关系存在: >0时,方程有两个不等的实根; Δ=b~2-4ac =0时,方程有两个相等的实根; <0时,方程没有实根。从几何意义上来看,二次函数y=ax~2+bx+c(其中a≠0)的图象是一条抛物线,也有下列关系存在: >0时,抛物线与x轴有两个交点(相交); Δ=b~2-4ac =0时,抛物线与x轴有一个交点(相切); <0时,抛物线与x轴没有交点(相离)。  相似文献   

18.
1基本内容1)如果ax~2 bx c=0(a≠0)的2根是x_1、x_2,那么x_1 x_2=-b/a·x_1·x_2=c/a.一元二次方程根与系数的关系叫做韦达定理.2)以2个数x_1、x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1 x_2)x x_1x_2=0.这种根与系的关系叫做韦达定理的逆定理.  相似文献   

19.
一元二次方程的根与系数之间存在着下列关系:如果ax~2+bx+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a.这就是有的参考书所讲的“韦达定理”.  相似文献   

20.
二次函数y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系是:二次函数y=ax^2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax^2+bx+c=0(a≠0)的根;反之,一元二次方程ax^2+bx+c=0(a≠0)的根是二次函数y=ax^2+bx+c(a≠0)的图象与x轴交点的横坐标.它们之间的这种关系在求解相关的问题时,如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号