首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对《全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)》中第8.6节《抛物线的简单几何性质》的例1:已知抛物线关于x轴对称,它的顶点在坐标原点,并经过点M(2,-2√2),求它的标准方程,并用描点法描出图形。我们好多教师对这一貌似简单例题的处理都是一带而过,甚至有些教师对它视而不见,干脆不讲。理由就是:易知抛物线的方程是y2=2px(p>0),将已知点M的坐标代入就可求出待定系数P,抛物线标准方程就求出来了,作图简单,就不要浪费更多的时间了。其实,对于此例讲解,暂且不说作图,就是求标准方程,为何设抛物线方程y2=2px(p>0),也许部分学…  相似文献   

2.
2001年高考数学理科(19)题、文科(20)题 试题设抛物线y=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点.点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O. 本题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.1 来源1.1 引用《平面解析几何》课本第101页8题: “过抛物线y2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y1,y2,求  相似文献   

3.
抛物线的焦点弦是抛物线定义与性质的交汇点.本文就与其相关的切线探索出若干性质.题目抛物线y2=2px(p>0)上不同两点A、B处的切线交于点Q.求证:若AB过抛物线的焦点F,则(1)AQ⊥BQ;(2)点Q在抛物线的准线上;(3)QF⊥AB.证明设A(x1,y1),B(x2,y2),Q(x0,y0).对于y2=2px求导,有2yy’=2p,得  相似文献   

4.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

5.
文 [1 ]、[2 ]分别探讨了直线方程 x0 xa2 +y0 yb2 =1和直线方程 x0 xa2 -y0 yb2 =1的几何意义。两篇论文给出的结论对于研究椭圆和双曲线具有非常重要的意义。其实对于抛物线、圆也有类似的结论 ,作为对两篇论文的补充现给出抛物线与之相关的定理。定理 1 已知P0 (x0 ,y0 )是抛物线 y2 =2 px上的任意一点 ,则直线 y0 y =p(x0 +x)表示此抛物线上以P0 (x0 ,y0 )为切点的切线。证明 当 y0 >0时 ,抛物线的方程可以写成 y =± 2 px,则 y′=± p2 px,所以P0 (x0 ,y0 )为切点的切线的斜率为± p2px0,切线的方程为 y-y0 =± p2 px0(x -x0 ) ,即…  相似文献   

6.
对抛物线的定点弦深入研究,能得到很多有趣的性质.本文给出五个和抛物线的定点弦有关的定值性质.性质1若直线l过定点M(m,0)(m∈R),且和抛物线y2=2px(p>0)相交于两点A(x1,y1),B(x2,y2),则x1x2,y1y2均为定值.  相似文献   

7.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

8.
《中学数学杂志》2005年第2期《新发现圆锥曲线的一个性质》一文(下称文[1])中,姜坤崇老师给出了抛物线的一个有趣性质.本文对文[1]的性质给予引申并提出过抛物线上一点的切线的一个新作法.为方便起见,先摘录文[1]的性质.性质1[1]给定抛物线C:y2=2px(p>0),O是顶点,过y轴上一点M(0,m)(m≠0)引直线交C于P、Q两点,记kOP,kOQ分别为直线OP、OQ的斜率,则kOP+kOQ为定值2mp.1该性质的几个引申引申1给定抛物线C:y2=2px(p>0),O是顶点,P、Q为抛物线上两点,记kOP,kOQ分别为直线OP、OQ的斜率.若kOP+kOQ为定值K(K≠0),则直线PQ必与y轴相交…  相似文献   

9.
命题 若一直线与抛物线 C:y2 =2 px(p>0 )相交于 A(x1 ,y1 ) ,B(x2 ,y2 )两点 ,则直线 AB的方程为 :2 px- (y1 y2 ) y y1 y2 =0 .证明 ∵点 A(x1 ,y1 ) ,B(x2 ,y2 )在抛物线 C:y2 =2 px上 ,∴ y21 =2 px1 ,y22 =2 px2 .作差得 :y21 - y22 =2 p(x1 - x2 ) ,当 x1 ≠ x2 时 ,k A B=y1 - y2x1 - x2 =2 py1 y2 ,∴直线 AB的方程为 :y- y1 =2 py1 y2(x- x1 ) ,即 2 px- (y1 y2 ) y y1 y2 =0 . 1当 x1 =x2 时 ,直线 AB为 :x=x1 ,此时y2 =- y1 ,故 1仍成立 .综上 ,命题成立 .特别地 :若 A(x1 ,y1 )与 B(x2 ,y2 )重合 ,即可得到过点 A…  相似文献   

10.
抛物线有如下一个性质:设点A,B在抛物线y2=2px(p>0)上,且OA⊥OB(O为坐标原点),则直线AB过定点(2p,0).本文对以上性质作进一步的探讨,得到如下几个性质:  相似文献   

11.
求圆、椭圆、双曲线、抛物线的切线方程,思路明确,但其计算量往往令人“算而却步”,下面就上述四种曲线,来剖析它们切线方程的结构特征,以飨读者. 对于二次函数的切线方程我们是会求的,如求曲线y=px2(p≠0)在点(x2,y0)处的切线方程.斜率k=f1(x0)=2px0,由点斜式知:切线方程为y-y0=2px0(x-x0)(→)=y+y2/2=px·x0,即把原函数表达式中的y换成y+y0/2,把x2换成x·x0.  相似文献   

12.
从教材中我们知道:平面内与一定点F和一条定直线1的距离相等的点的轨迹叫做抛物线.对标准方程为y2=2px(p>0)的抛物线而言,它有一个焦点F(p/2,0)和一条准线1:x=-p/2,无论p的值如何变化,抛物线的离心率都等于1.抛物线有一个顶点,一条对称轴,是无心二次曲线.  相似文献   

13.
2001年高考第19题是很典型的抛物线性质的命题: 设抛物线y2=2px(p>0)的焦点为F,过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线AC经过原点O.  相似文献   

14.
<正>侯立刚老师在《极端解题化难为易》(见《数学通报》2010(2)下半月教师版)一文中用探究性问题的方式给出了抛物线的一个性质.笔者通过对椭圆和双曲线的研究,发现他们具有类似的性质.本文论述证明如下:(1)抛物线y2=2px(p>0),M(p,0),经  相似文献   

15.
对一道高考题的探讨   总被引:3,自引:0,他引:3  
20 0 1年全国高考理科数学第 (19)题 (文科第 (2 0 )题 )为 :设抛物线 y2 =2 px(p>0 )的焦点为 F,经过点 F的直线交抛物线于 A,B两点 ,点 C在抛物线的准线上 ,且 BC∥ x轴 ,证明直线AC经过原点 O.由于本题中 O点就是抛物线的顶点 ,因此本题中的结论实际上就是 AC经过抛物线的顶点 ,这反映了抛物线的一个几何性质 .我们自然会联想 :椭圆、双曲线是否也具有类似的几何性质 ?我们先研究椭圆 .问题 1 设椭圆 x2a2 y2b2 =1(a>b>0 )的左焦点为 F,经过点 F的直线交椭圆于 A,B两点 ,点 C在椭圆的左准线 l上 ,且 BC∥ x轴 ,则直线 AC是否…  相似文献   

16.
1.问题呈现已知抛物线y^2=2px(p>0),过焦点F的一条直线l交抛物线于A、B两点,原点为O.求cos∠AOB的取值范围.这个问题是我在学习的过程中的一个思考,经过研究得出以下解法:解:设A(x1,y1),B(x2,y2),易知y1^2=2px1,y2^2=2px2.  相似文献   

17.
众所周知,设直线l与抛物线y2=2px(p>0)相交于A(x1,y1)、B(x2,y2)两点,若l经过抛物线的焦点F,则y1·y2=-p2,反之也成立.那么,若y1·y2=p2,直线l也经过某一定点吗?著名的数学教育权威弗赖登塔尔认为,数学教学方法的核心是学生的“再创造”.在具体实施过程中必须努力激发学生“再创造”的动机,必须以学生的“数学现实”为基础,必须重视合情推理的作用.基于这一教学理念,在2004年安徽省六安市高中数学研讨课的一节公开课“抛物线y2=2px(p>0)的焦点弦性质”的教学中,通过师生互动,发现了一个新的结论.为说明问题,先将本节课的主要教学环节简介…  相似文献   

18.
高中数学教材(试验修订本.必修)第119页有 这样一道习题: 过抛物线y2=2px(p>0)的焦点的一条直线和 此抛物线相交,两个交点的坐标为(x1,y1)和 (x2,y2),求证:x1x2=p2/4,y1y2=-p2. 这道题的结论也被称为抛物线焦点弦的性质. 然而如果在教学中仅把此题作为一道习题来处理或 作为一个性质去介绍就未免有点"入宝山而空返" 了.在实践中由于笔者陈题新讲、大胆放手、适时点 化,收到了意想不到的效果.  相似文献   

19.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

20.
文[1]给出了与抛物线有关的若干性质,其中性质1如下:已知抛物线C:y=px2,过Q(0,b)(b>0)的任一直线与曲线C交于M,N两点,过点M和N的切线的交点R的轨迹方程为y=-b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号