首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Many coaches often instruct swimmers to keep the elbow in a high position (high elbow position) during early phase of the underwater stroke motion (pull phase) in front crawl, however, the high elbow position has never been quantitatively evaluated. The aims of this study were (1) to quantitatively evaluate the “high elbow” position, (2) to clarify the relationship between the high elbow position and required upper limb configuration and (3) to examine the efficacy of high elbow position on the resultant swimming velocity. Sixteen highly skilled and 6 novice male swimmers performed 25 m front crawl with maximal effort and their 3-dimensional arm stroke motion was captured at 60 Hz. An attempt was made to develop a new index to evaluate the high elbow position (Ihe: high elbow index) using 3-dimensional coordinates of the shoulder, elbow and wrist joints. Ihe of skilled swimmers moderately correlated with the average shoulder internal rotation angle (r = ?0.652, < 0.01) and swimming velocity (r = ?0.683, P < 0.01) during the pull phase. These results indicate that Ihe is a useful index for evaluating high elbow arm stroke technique during the pull phase in front crawl.  相似文献   

2.
Undulatory underwater swimming (UUS) is one of the major skills contributing to performance in competitive swimming. UUS has two phases– the upbeat is performed by hip extension and knee flexion, and the downbeat is the converse action. The purpose of this study was to determine which kinematic variables of the upbeat and downbeat are associated with prone UUS performance in an elite sample. Ten elite participants were filmed performing three prone 20 m UUS trials. Seven landmarks were manually digitised to calculate eighteen kinematic variables, plus the performance variable– horizontal centre of mass velocity (VCOM). Mean VCOM was significantly correlated with body wave velocity (upbeat r = 0.81, downbeat r = 0.72), vertical toe velocity (upbeat r = 0.71, downbeat r = 0.86), phase duration (upbeat r = ?0.79), peak hip angular velocity (upbeat r = 0.73) and mean knee angular velocity (upbeat r = ?0.63), all significant at P < 0.05. A multiple stepwise regression model explained 78% of variance in mean VCOM. Peak toe velocity explained 72% of the variance, and mean body wave velocity explained an additional 6%. Elite swimmers should strive for a high peak toe velocity and a fast caudal transfer of momentum to optimise underwater undulatory swimming performance.  相似文献   

3.
In Paralympic seated throwing events, the athlete can throw with and without an assistive pole. This study aimed to identify and compare performance-related kinematic variables associated with both seated throwing techniques. Twenty-nine non-disabled males (21.9 ± 2.6 years) performed 12 maximal throws using a 1-kg ball in two conditions (no-pole and pole). Automatic 3D-kinematic tracking (150 Hz) and temporal data were acquired. There was no significant difference between ball speeds at the point of release between conditions (no-pole = 12.8 ± 1.6 m/s vs. pole = 12.9 ± 1.5 m/s). There were four kinematic variables that were strongly correlated with ball speed when throwing with or without an assistive pole. These variables were elbow flexion at the start phase (pole r = .39 and no-pole r = .41), maximum shoulder external rotation angular velocity during the arm cocking phase (pole r = .42), maximum shoulder internal rotation angular velocity during the arm acceleration phase (pole r = .47), and should internal rotation angular velocity at the instant of ball release (pole r = .40). The pole clearly influenced the throwing technique with all four strongly correlated variables identified in this condition, compared to only one during the no-pole condition. When using the pole, participants produced significantly higher shoulder internal rotation angular velocities during the arm acceleration phase (pole = 367 ± 183°/s vs. no-pole = 275 ± 178°/s, p < .05) and at the instant of ball release (pole = 355 ± 115°/s vs. no-pole = 264 ± 120°/s, p < .05), compared to throwing without the pole. These findings have implications for the development of evidence-based classification systems in Paralympic seated throwing, and facilitate research that investigates the impact of impairment on seated throwing performance.  相似文献   

4.
Task-specific auditory training can improve sensorimotor processing times of the auditory reaction time (RT). The majority of competitive swimmers do not conduct habitual start training with the electronic horn used to commence a race. We examined the effect of four week dive training interventions on RT and block time (BT) of 10 male adolescent swimmers (age 14.0 ± 1.4 years): dive training with auditory components (speaker and electronic horn) (n = 5) and dive training without auditory components (n = 5). Auditory stimulus dive training significantly reduced swimming start RT, compared with dive training without auditory components (p < 0.01), with a group mean RT reduction of 13 ± 9 ms. Four of the five swimmers that received auditory stimulus training showed medium to large effect size reductions in RT (d = 0.74; 1.32; 1.40; 1.81). No significant changes to swimmers’ BTs were evident in either dive training intervention. The adolescent swimmers’ results were compared against six male elite swimmers (age 19.8 ± 1.0 years). The elite swimmers had significantly shorter BTs (p < 0.05) but no significant difference in RTs. Auditory stimulus dive training should be explored further as a mechanism for improving swimming start performance in elite swimmers who have pre-established optimal BTs.  相似文献   

5.
This study investigated the effect of completing additional warm-up strategies in the transition phase between the pool warm up and the start of a race on elite sprint swimming performance. Twenty-five elite swimmers (12 men, 20 ± 3 years; 13 women, 20 ± 2 years, performance standard ~807 FINA2014 points) completed a standardised pool warm up followed by a 30-min transition phase and a 100-m freestyle time trial. During the transition phase, swimmers wore a tracksuit jacket with integrated heating elements and performed a dry land-based exercise routine (Combo), or a conventional tracksuit and remained seated (Control). Start (1.5% ± 1.0%, P = 0.02; mean ± 90% confidence limits) and 100-m time trial (0.8% ± 0.4%, P < 0.01) performances were improved in Combo. Core temperature declined less (?0.2°C ± 0.1°C versus ?0.5°C ± 0.1°C, P = 0.02) during the transition phase and total local (trapezius) haemoglobin concentration was greater before the time trial in Combo (81 µM ± 25 µM versus 30 µM ± 18 µM, P < 0.01; mean ± standard deviation) than in Control. Combining swimmers traditional pool warm up with passive heating via heated jackets and completion of dry land-based exercises in the transition phase improves elite sprint swimming performance by ~0.8%.  相似文献   

6.
Abstract

This study examined the relationship between intensity of training and changes in hydration status, core temperature, sweat rate and composition and fluid balance in professional football players training in the heat. Thirteen professional football players completed three training sessions; “higher-intensity” (140 min; HI140), “lower-intensity” (120 min; LI120) and “game-simulation” (100 min; GS100). Movement demands were measured by Global Positioning System, sweat rate and concentration were determined from dermal patches and body mass change. Despite similar environmental conditions (26.9 ± 0.1°C and 65.0 ± 7.0% relative humidity [Rh]), higher relative speeds (m · min?1) and increased perceptions of effort and thermal strain were observed in HI140 and GS100 compared with LI120 (P < 0.05). Significantly (P < 0.05) greater sweat rate (L · h?1) and electrolyte losses (g) were observed in HI140 and GS100 compared with LI120. Rate of rise in core temperature was correlated with mean speed (r = 0.85), session rating of perceived exertion (sRPE) (r = 0.61), loss of potassium (K+) (r = 0.51) sweat rate (r = 0.49), and total sweat loss (r = 0.53), with mean speed the strongest predictor. Sodium (Na+) (r = 0.39) and K+ (r = 0.50) losses were associated with total distance covered. In hot conditions, individualised rehydration practices should be adopted following football training to account for differences in sweat rate and electrolyte losses in response to intensity and overall activity within a session.  相似文献   

7.
The aim of this study was to propose a new force parameter, associated with swimmers’ technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers’ technique.  相似文献   

8.
This study aimed to correlate, compare, and determine the reliability of force, velocity, and power values collected with a force plate (FP) and a linear transducer during loaded jumps. Twenty-three swimmers performed an incremental loading test at 25, 50, 75, and 100% of their own body weight on a FP. A linear velocity transducer (LVT) was attached to the bar to assess the peak and the mean values of force, velocity, and power. Both the peak variables (r = 0.94 – 0.99 for peak force, r = 0.83 – 0.91 for peak velocity, and r = 0.90–0.94 for peak power; p < 0.001) and the mean variables (r = 0.96–0.99 for mean force, r = 0.87–0.89 for mean velocity, and r = 0.93–0.96 for mean power; p < 0.001) were strongly correlated between both measurement tools. Differences in the shape of the force-, velocity-, and power-time curves were observed. The LVT data showed a steeper increase in these variables at the beginning of the movement, while the FP recorded larger values in the latter part. Peak values were more reliable than mean values. These results suggest that the LVT is a valid tool for the assessment of loaded squat jump.  相似文献   

9.
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r2adj = 0.96; 95% CI for slope is [?0.0244, ?0.0258], P < 0.0001), full squat (r2adj = 0.94; 95% CI for slope is [?0.0144, ?0.0139], P < 0.0001) and half squat (r2adj = 0.97; 95% CI for slope is [?0.0135, ?0.00143], P < 0.0001); for MPV, leg press (r2adj = 0.96; 95% CI for slope is [?0.0169, ?0.0175], P < 0.0001, full squat (r2adj = 0.95; 95% CI for slope is [?0.0136, ?0.0128], P < 0.0001) and half squat (r2adj = 0.96; 95% CI for slope is [?0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s?1 and 0.63 ± 0.15 m s?1, 0.29 ± 0.05 m s?1 and 0.89 ± 0.17 m s?1, 0.33 ± 0.05 m s?1 and 0.95 ± 0.13 m s?1 for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.  相似文献   

10.
Purpose: An advanced system for the assessment of climbing-specific performance was developed and used to: (a) investigate the effect of arm fixation (AF) on construct validity evidence and reliability of climbing-specific finger-strength measurement; (b) assess reliability of finger-strength and endurance measurements; and (c) evaluate the relationship between finger flexor all-out test scores and climbing ability. Methods: To determine the effect of AF, 22 male climbers performed 2 maximal strength and all-out tests with AF (shoulder and elbow flexed at 90°) and without AF (shoulder flexed at 180° and elbow fully extended). To determine reliability, 9 male climbers completed 2 maximal strength tests with and without AF and an all-out and intermittent test without AF. Results: The maximal strength test without AF more strongly determined climbing ability than the test with AF (r2 = .48 and r2 = .42 for sport climbing; r2 = .66 and r2 = .42 for bouldering, respectively). Force and time variables were highly reliable; the rate of force development and fatigue index had moderate and low reliability. The maximal strength test with AF provided slightly higher reliability than without AF (intraclass correlation coefficient [ICC] = 0.94, ICC = 0.88, respectively). However, smaller maximal forces were achieved during AF (484 ± 112 N) than without AF (546 ± 132 N). All-out test average force had sufficiently high reliability (ICC = 0.92) and a relationship to sport climbing (r2 = .42) and bouldering ability (r2 = .58). Conclusion: Finger strength and endurance measurements provided sufficient construct validity evidence and high reliability for time and force parameters. Arm fixation provides more reliable results; however, the position without AF is recommended as it is more related to climbing ability.  相似文献   

11.
The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml?kg?1?min?1) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r2 = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (tmax) were not associated with running performance (r = ?0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.  相似文献   

12.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = ? 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

13.
14.
15.
The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.  相似文献   

16.
Abstract

In this study, we examined the correlations between selected markers of isometric training intensity and subsequent reductions in resting blood pressure. Thirteen participants performed a discontinuous incremental isometric exercise test to volitional exhaustion at which point mean torque for the final 2-min stage (2min-torquepeak) and peak heart rate peak (HRpeak) were identified. Also, during 4 weeks of training (3 sessions per week, comprising 4 × 2 min bilateral leg isometric exercise at 95% HRpeak), heart rate (HRtrain), torque (Torquetrain), and changes in EMG amplitude (ΔEMGamp) and frequency (ΔEMGfreq) were determined. The markers of training intensity were: Torquetrain relative to the 2min-torquepeak (%2min-torquepeak), EMG relative to EMGpeak (%EMGpeak), HRtrain ΔEMGamp, ΔEMGfreq, and %MVC. Mean systolic (?4.9 mmHg) and arterial blood pressure (?2.7mmHg) reductions correlated with %2min-torquepeak (r = ?0.65, P = 0.02 and r = ?0.59, P = 0.03), ΔEMGamp (r = 0.66, P = 0.01 and r = 0.59, P = 0.03), ΔEMGfreq (r = ?0.67, P = 0.01 and r = ?0.64, P = 0.02), and %EMGpeak (systolic blood pressure only; r = ?0.63, P = 0.02). These markers best reflect the association between isometric training intensity and reduction in resting blood pressure observed after bilateral leg isometric exercise training.  相似文献   

17.
Abstract

We examined variations in dart-throwing performance during the daytime in 12 participants. Two distances from the dartboard were investigated – the normal distance (short throws) and another 50% further away than this (long throws). Intra-aural temperature and subjective fatigue were measured, and errors in performance were assessed as the radial distances of throws from the bulls-eye and the standard deviation of these distances. Long-distance throws improved significantly throughout the daytime and correlated positively with intra-aural temperature (r = ?0.49, P = 0.002 and r = ?0.49, P = 0.002 for errors and standard deviation of errors, respectively), but not with subjective fatigue (r = ?0.10, P = 0.56 and r = ?0.05, P = 0.74 for errors and standard deviation of errors, respectively). Short-distance throws were associated less with intra-aural temperature (r = ?0.46, P = 0.005 and r = ?0.17, P = 0.31 for errors and standard deviation of errors, respectively), and worsened with fatigue (r = +0.34, P = 0.040 for errors). Compared with the short-distance throws, the long-distance throws were performed significantly less well than could be accounted for by the increased distance (mean errors were increased 1.67 – 2.78 times and standard deviation of errors of errors 1.58 – 3.68 times), supporting the concept of a trade-off between force of contraction and accuracy of performance. Throwing darts can be used as a model for investigating factors that influence motor performance, and our results indicate that the effects of time of day upon performance depend upon the relative importance of force and accuracy.  相似文献   

18.
The purpose of this study was to explore the relationships between mechanical power, thrust power, propelling efficiency and sprint performance in elite swimmers. Mechanical power was measured in 12 elite sprint male swimmers: (1) in the laboratory, by using a whole-body swimming ergometer (W'TOT) and (2) in the pool, by measuring full tethered swimming force (FT) and maximal swimming velocity (Vmax): W'T = FT · Vmax. Propelling efficiency (ηP) was estimated based on the “paddle wheel model” at Vmax. Vmax was 2.17 ± 0.06 m · s?1, ηP was 0.39 ± 0.02, W'T was 374 ± 62 W and W'TOT was 941 ± 92 W. Vmax was better related to W'T (useful power output: R = 0.943, P < 0.001) than to W'TOT (total power output: R = 0.744, P < 0.01) and this confirms the use of the full tethered test as a valid test to assess power propulsion in sprinters and to estimate swimming performance. The ratio W'T/W'TOT (0.40 ± 0.04) represents the fraction of total mechanical power that can be utilised in water (e.g., ηP) and was indeed the same as that estimated based on the “paddle wheel model”; this supports the use of this model to estimate ηP in swimming.  相似文献   

19.
Abstract

The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake ([Vdot]O2max), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute [Vdot]O2max was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

20.
Fly-fishing is a popular form of recreation. Recent evidence has associated overhand fly-casting movements with upper extremity pain. However, little research exists on the motions and coordination common to fly-casting. The aim of this study was to establish upper extremity kinematic trends of fly-casting while casting greater line lengths. It was hypothesized that kinematic casting parameters would increase and time between peak angular velocities would decrease with greater line length. Eighteen males participated in the study. Three-dimensional motion capture was conducted to calculate shoulder, elbow, and wrist kinematics during casting conditions of 6.1, 12.2, 18.3, and 24.4 m of line. Multiple analyses of variance were used to assess the condition effect of line length on the kinematic variables (P = 0.05). Overall, total range of movement increased with increasing length of line cast. Peak angular velocity exhibited a proximal-to-distal trend: peak shoulder internal rotation followed by elbow extension, then wrist ulnar deviation. Time between peak shoulder and elbow angular velocities increased significantly as line length increased. Our findings indicate that specific changes in total range of movement accommodate the demands of casting greater lengths of line. Also, joint velocity coordination patterns of fly-casting appear to follow a proximal-to-distal pattern. These findings represent an initial foundation for connections between kinematics and upper extremity pain reported by fly-fisherman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号